Homework 6 Due: Friday, September 28

- 1. Consider a trivial theta function $\theta(z) = \exp(pz^2 + qz + r)$. Describe its type $\{(a_{\lambda}, b_{\lambda}) : \lambda \in \Lambda\}$.
- 2. Let $\Lambda \subset \mathbb{C}$ be a lattice. Suppose there is a theta function of type $\{(a_{\lambda}, b_{\lambda}) : \lambda \in \mathbb{C}\}$.
 - (a) Show that for all $\lambda, \mu \in \Lambda$,

$$a_{\lambda+\mu} = a_{\lambda} + a_{\mu}.$$

(b) What condition must the b_{λ} satisfy?

(HINT: Let θ be of type $\{a_{\lambda}, b_{\lambda}\}$. Evaluate $\theta(z + \lambda + \mu)$ in two different ways.)

- 3. Fix a lattice Λ . Suppose α is a theta function of type $\{a_{\lambda}, b_{\lambda}\}$, and β is a theta function of type $\{c_{\lambda}, d_{\lambda}\}$. Show that the product $\alpha\beta$ is also a theta function. What is its type?
- 4. Let θ be a theta function (for the lattice Λ , with type $\{(a_{\lambda}, b_{\lambda})\}$). Show that $(\theta'/\theta)'$ is periodic with respect to Λ .
- 5. Let $\xi = \frac{1+\tau}{2}$. In class on Monday¹ we will define functions

$$\begin{aligned} \theta_{00}(z) &= \vartheta \begin{bmatrix} 0\\0 \end{bmatrix} (z) = \vartheta(z) \\ \theta_{01}(z) &= \vartheta \begin{bmatrix} 0\\1/2 \end{bmatrix} (z) = \vartheta(z + \frac{1}{2}) \\ \theta_{10}(z) &= \vartheta \begin{bmatrix} 1/2\\0 \end{bmatrix} (z) = \vartheta(z + \frac{\tau}{2})\widetilde{e}(\tau/8 + \frac{1}{2}z) \\ \theta_{11}(z) &= \vartheta \begin{bmatrix} 1/2\\1/2 \end{bmatrix} (z) = \vartheta(z + \frac{\tau+1}{2})\widetilde{e}(\tau/8 + \frac{1}{2}(z + \frac{1}{2})) \end{aligned}$$

and use identities

$$\begin{aligned} \theta_{00}(z+\xi) &= -i\tilde{e}(-\tau/8 - z/2)\theta_{11}(z) \\ \theta_{01}(z+\xi) &= \tilde{e}(-\tau/8 - z/2)\theta_{10}(z) \\ \theta_{10}(z+\xi) &= -i\tilde{e}(-\tau/8 - z/2)\theta_{01}(z) \\ \theta_{11}(z+\xi) &= -\tilde{e}(-\tau/8 - z/2)\theta_{00}(z). \end{aligned}$$

Verify these identities.

¹actually, Wednesday

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007