Homework 6
Due: Friday, September 28

1. Consider a trivial theta function $\theta(z)=\exp \left(p z^{2}+q z+r\right)$. Describe its type $\left\{\left(a_{\lambda}, b_{\lambda}\right): \lambda \in\right.$ $1\}$.
2. Let $\Lambda \subset \mathbb{C}$ be a lattice. Suppose there is a theta function of type $\left\{\left(a_{\lambda}, b_{\lambda}\right): \lambda \in \mathbb{C}\right\}$.
(a) Show that for all $\lambda, \mu \in \Lambda$,

$$
a_{\lambda+\mu}=a_{\lambda}+a_{\mu} .
$$

(b) What condition must the b_{λ} satisfy?
(Hint: Let θ be of type $\left\{a_{\lambda}, b_{\lambda}\right\}$. Evaluate $\theta(z+\lambda+\mu)$ in two different ways.)
3. Fix a lattice Λ. Suppose α is a theta function of type $\left\{a_{\lambda}, b_{\lambda}\right\}$, and β is a theta function of type $\left\{c_{\lambda}, d_{\lambda}\right\}$. Show that the product $\alpha \beta$ is also a theta function. What is its type?
4. Let θ be a theta function (for the lattice Λ, with type $\left\{\left(a_{\lambda}, b_{\lambda}\right)\right\}$). Show that $\left(\theta^{\prime} / \theta\right)^{\prime}$ is periodic with respect to Λ.
5. Let $\bar{\xi}=\frac{1+\tau}{2}$. In class on Monday ${ }^{1}$ we will define functions

$$
\begin{aligned}
& \theta_{00}(z)=\vartheta\left[\begin{array}{l}
0 \\
0
\end{array}\right](z)=\vartheta(z) \\
& \theta_{01}(z)=\vartheta\left[\begin{array}{c}
0 \\
1 / 2
\end{array}\right](z)=\vartheta\left(z+\frac{1}{2}\right) \\
& \theta_{10}(z)=\vartheta\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right](z)=\vartheta\left(z+\frac{\tau}{2}\right) \widetilde{e}\left(\tau / 8+\frac{1}{2} z\right) \\
& \theta_{11}(z)=\vartheta\left[\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right](z)=\vartheta\left(z+\frac{\tau+1}{2}\right) \widetilde{e}\left(\tau / 8+\frac{1}{2}\left(z+\frac{1}{2}\right)\right)
\end{aligned}
$$

and use identities

$$
\begin{aligned}
& \theta_{00}(z+\xi)=-i \widetilde{e}(-\tau / 8-z / 2) \theta_{11}(z) \\
& \theta_{01}(z+\xi)=\widetilde{e}(-\tau / 8-z / 2) \theta_{10}(z) \\
& \theta_{10}(z+\xi)=-i \widetilde{e}(-\tau / 8-z / 2) \theta_{01}(z) \\
& \theta_{11}(z+\xi)=-\widetilde{e}(-\tau / 8-z / 2) \theta_{00}(z) .
\end{aligned}
$$

Verify these identities.

[^0]
[^0]: ${ }^{1}$ actually, Wednesday

