Homework 5 Due: Friday, September 21

Throughout this problem set, let $F(Z_0, \dots, Z_n) \in \mathbb{C}[Z_0, \dots, Z_n]$ be homogeneous of degree *d*. Let $W = \{P \in \mathbb{P}^n : F(P) = 0\} \subset \mathbb{P}^n$ be the vanishing locus of *F*.

- 1. Dehomogenization Let $f(x_1, \dots, x_n) = F(1, x_1, \dots, x_n)$.
 - (a) Show that $Z_0^d f(Z_1/Z_0, \dots, Z_n/Z_0) = F(Z_0, \dots, Z_n)$. In fact, the affine coordinates x_j are related to the projective coordinates Z_j by $x_j = Z_j/Z_0$.
 - (b) Suppose $P = [a_0, \dots, a_n] \in U_0$. Show that F(P) = 0 if and only if $f(a_1/a_0, \dots, a_n/a_0) = 0$.

In fact, let $\phi_0 : U_0 \to \mathbb{C}^n$ be the usual chart. Then $\phi_0(W \cap U_0)$ is the vanishing locus of f in \mathbb{C}^n .

2. *A formula of Euler* Let $F(Z_0, \dots, Z_n) \in \mathbb{C}[Z_0, \dots, Z_n]$ be homogeneous of degree *d*. Prove Euler's formula:

$$F = \frac{1}{d} \sum_{j=0}^{n} Z_j \cdot \frac{\partial}{\partial Z_j} F.$$

(HINT: Prove this for monomials.)

- 3. Let $F \in \mathbb{C}[Z_0, \dots, Z_n]$ be homogeneous of degree *d*.
 - (a) Suppose $P \in \mathbb{P}^n$ is a point such that for each $j \in \{0, \dots, n\}$, $\frac{\partial}{\partial Z_j} F|_P = 0$. Show that F(P) = 0, too.
 - (b) Suppose that the partial derivatives $\frac{\partial}{\partial Z_j}F$ have no common zero. Show that *W* admits a structure of complex manifold.

(HINT: Consider the intersections $X \cap U_j$ of X with the various affine patches U_j . If $f(x_1, \dots, x_n) = F(1, x_1, \dots, x_n)$, then

$$\frac{\partial}{\partial x_j}f|_{(a_1,\cdots,a_n)}=\frac{\partial}{\partial Z_j}F|_{[1,a_1,\cdots,a_n]}.$$

)

4. Let $\Lambda \subset \mathbb{C}$ be a lattice. On Monday we will define its discriminant as

$$\Delta(\Lambda) = (60G_4(\Lambda))^3 - 27(140G_6(\Lambda))^2.$$

and show that it is nonzero.

(a) Explain how to define a Δ function on the upper half plane \mathfrak{h} such that $\Delta(\tau) = \Delta(\Lambda_{1,\tau})$.

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007

- (b) Suppose $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. What is the relationship between $\Delta(M\tau)$ and $\Delta(\tau)$?
- (c) Construct a (nonconstant) function f on \mathfrak{h} of the form $f(\tau) = \frac{g(\tau)}{\Delta(\tau)}$ such that for all $\tau \in \mathfrak{h}$ and $M \in SL_2(\mathbb{Z})$, $f(M\tau) = f(\tau)$.

(HINT: See HW 4 #1.)

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007