Homework 5

Due: Friday, September 21

Throughout this problem set, let $F\left(Z_{0}, \cdots, Z_{n}\right) \in \mathbb{C}\left[Z_{0}, \cdots, Z_{n}\right]$ be homogeneous of degree d. Let $W=\left\{P \in \mathbb{P}^{n}: F(P)=0\right\} \subset \mathbb{P}^{n}$ be the vanishing locus of F.

1. Dehomogenization Let $f\left(x_{1}, \cdots, x_{n}\right)=F\left(1, x_{1}, \cdots x_{n}\right)$.
(a) Show that $Z_{0}^{d} f\left(Z_{1} / Z_{0}, \cdots, Z_{n} / Z_{0}\right)=F\left(Z_{0}, \cdots, Z_{n}\right)$.

In fact, the affine coordinates x_{j} are related to the projective coordinates Z_{j} by $x_{j}=Z_{j} / Z_{0}$.
(b) Suppose $P=\left[a_{0}, \cdots, a_{n}\right] \in U_{0}$. Show that $F(P)=0$ if and only if $f\left(a_{1} / a_{0}, \cdots, a_{n} / a_{0}\right)=$ 0.

In fact, let $\phi_{0}: U_{0} \rightarrow \mathbb{C}^{n}$ be the usual chart. Then $\phi_{0}\left(W \cap U_{0}\right)$ is the vanishing locus of f in \mathbb{C}^{n}.
2. A formula of Euler Let $F\left(Z_{0}, \cdots, Z_{n}\right) \in \mathbb{C}\left[Z_{0}, \cdots, Z_{n}\right]$ be homogeneous of degree d. Prove Euler's formula:

$$
F=\frac{1}{d} \sum_{j=0}^{n} Z_{j} \cdot \frac{\partial}{\partial Z_{j}} F .
$$

(Hint: Prove this for monomials.)
3. Let $F \in \mathbb{C}\left[Z_{0}, \cdots, Z_{n}\right]$ be homogeneous of degree d.
(a) Suppose $P \in \mathbb{P}^{n}$ is a point such that for each $j \in\{0, \cdots, n\},\left.\frac{\partial}{\partial Z_{j}} F\right|_{P}=0$. Show that $F(P)=0$, too.
(b) Suppose that the partial derivatives $\frac{\partial}{\partial Z_{j}} F$ have no common zero. Show that W admits a structure of complex manifold.
(HINT: Consider the intersections $X \cap U_{j}$ of X with the various affine patches U_{j}. If $f\left(x_{1}, \cdots, x_{n}\right)=$ $F\left(1, x_{1}, \cdots, x_{n}\right)$, then

$$
\left.\frac{\partial}{\partial x_{j}} f\right|_{\left(a_{1}, \cdots, a_{n}\right)}=\left.\frac{\partial}{\partial Z_{j}} F\right|_{\left[1, a_{1}, \cdots, a_{n}\right]} .
$$

)
4. Let $\wedge \subset \mathbb{C}$ be a lattice. On Monday we will define its discriminant as

$$
\Delta(\Lambda)=\left(60 G_{4}(\Lambda)\right)^{3}-27\left(140 G_{6}(\Lambda)\right)^{2} .
$$

and show that it is nonzero.
(a) Explain how to define a Δ function on the upper half plane \mathfrak{h} such that $\Delta(\tau)=\Delta\left(\Lambda_{1, \tau}\right)$.
(b) Suppose $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. What is the relationship between $\Delta(M \tau)$ and $\Delta(\tau)$?
(c) Construct a (nonconstant) function f on \mathfrak{h} of the form $f(\tau)=\frac{g(\tau)}{\Delta(\tau)}$ such that for all $\tau \in \mathfrak{h}$ and $M \in \mathrm{SL}_{2}(\mathbb{Z}), f(M \tau)=f(\tau)$.
(Hint: See HW 4 \#1.)

