Homework 4

Due: Friday, September 14

1. For a lattice Λ and a natural number $k \geq 3$, we have defined a constant

$$
G_{k}=G_{k}(\Lambda)=\sum_{\lambda \in \Lambda^{\prime}} \frac{1}{\lambda^{k}} .
$$

Since any lattice Λ is homothetic to some Λ_{τ}, we study the function defined on the upper half-plane \mathfrak{h} :

$$
G_{k}(\tau)=\sum_{m, n \in \mathbb{Z}: m, n \text { not both } 0} \frac{1}{(m \tau+n)^{k}} .
$$

(a) Suppose that $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Show that

$$
G_{k}(M \cdot \tau)=(c \tau+d)^{k} G_{k}(\tau) .
$$

(b) Use this to create some meromorphic functions which are defined on the quotient space $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h} .{ }^{1}$
2. Consider the unit sphere $X=\left\{(a, b, c): a^{2}+b^{2}+c^{2}=1\right\} \subset \mathbb{R}^{3}$. Let $N=(0,0,1), S=$ $(0,0,-1), U_{N}=X-\{N\}, U_{S}=X-\{S\}$. Consider the following three charts on X :

$$
\begin{gathered}
U_{N} \xrightarrow{\phi_{N}} \mathbb{C} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}+i b_{0}}{1-c_{0}} \\
U_{S} \xrightarrow{\phi_{S}} \mathbb{C} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}+i b_{0}}{1+c_{0}} \\
U_{S} \xrightarrow[\psi_{S}]{\longrightarrow C} \\
\left(a_{0}, b_{0}, c_{0}\right) \longmapsto \frac{a_{0}-i b_{0}}{1+c_{0}}
\end{gathered}
$$

(a) The inverse of ϕ_{N} is

$$
\phi_{N}^{-1}(z)=\left(\frac{2 \mathfrak{R}(z)}{|z|^{2}+1}, \frac{2 \Im(z)}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right) .
$$

Calculate $\phi_{S}^{-1}(z)$ and $\psi_{S}^{-1}(z)$.

[^0](b) Among the three charts $\left\{\left(U_{N}, \phi_{N}\right),\left(U_{S}, \phi_{S}\right),\left(U_{S}, \psi_{S}\right)\right\}$, one pair is compatible and the other two are not. Which is which? Why? (Hint: Remember that a function f is holomorphic if and only if $\partial_{\bar{z}} f=0$; colloquially, a function is holomorphic if it doesn't involve any \bar{z}^{\prime} s.)
3. In class, on Monday, we will define projective n-space \mathbb{P}^{n}, and a complex structure on it. Consider the map
\[

$$
\begin{aligned}
& \mathbb{P}^{1} \xrightarrow{\alpha} \\
& {\left[z_{0}, z_{1}\right] \longmapsto\left(\frac{2 \mathfrak{R}\left(z_{1} \overline{z_{0}}\right)}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}, \frac{2 \Im\left(z_{1} \overline{z_{0}}\right)}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}, \frac{\left|z_{1}\right|^{2}-\left|z_{0}\right|^{2}}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}} .\right.}
\end{aligned}
$$
\]

(a) Show that this really is a function on \mathbb{P}^{1}, i.e., if $\lambda \in \mathbb{C}^{\times}$, then $\alpha\left(\left[\lambda z_{0}, \lambda z_{1}\right]\right)=\alpha\left(\left[z_{0}, z_{1}\right]\right)$.
(b) Show that the image of α is the unit sphere $a^{2}+b^{2}+c^{2}=1$. (In fact, α is a homeomorphism.) (HINT: Remember that for any $w \in \mathbb{C}, \mathfrak{R}(w)=\frac{w+\bar{w}}{2}, \mathfrak{I}(w)=\frac{w-\bar{w}}{2 i}$, and $\left.|w|^{2}=w \bar{w}.\right)$

Extra credit: For $j \in\{0,1\}$, we will let $U_{j}=\left\{\left[z_{0}, z_{1}\right]: z_{j} \neq 0\right\} \subset \mathbb{P}^{1}$; and define the charts $\left(U_{j}, \phi_{j}\right)$ where $\phi_{j}\left(\left[z_{0}, z_{1}\right]\right)=\frac{z_{1-j}}{z_{j}}$. Endow S^{2} with the compatible charts you found in problem (2). Show that $\alpha: \mathbb{P}^{1} \rightarrow S^{2}$ is holomorphic.

[^0]: ${ }^{1}$ Really, explain how to create functions which are analytic on some open subset of $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}$.

