Homework 3

Due: Friday, September 7

1. Since $\mathbb{Z}[2 i] \subset \mathbb{Z}[i]$, the "multiplication by one" map induces a map of elliptic curves

(a) Describe all $P \in V_{1}$ such that $\omega_{2} \circ \widetilde{f}(P)=\omega_{2}(0)$.
(b) What is $\operatorname{ker} f$?
(c) Repeats parts (a) and (b) when $\mathbb{Z}[2 i]$ is replaced with $\mathbb{Z}[n i]$ for an arbitrary natural number n.
2. Let h be a meromorphic function, and suppose $z_{0} \in \mathbb{C}, z_{0} \neq 0$. Show that

$$
\operatorname{res}_{z_{0}}\left(\frac{z h^{\prime}(z)}{h(z)}\right)=\operatorname{ord}_{z_{0}}(h) \cdot z_{0} .
$$

3. Let $\wedge \subset \mathbb{C}$ be a lattice, and suppose f is a Λ-periodic function. Let D be a fundamental domain as in (1)

so that that f has no poles or zeros on $\partial \bar{D}$. Show that:

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\partial \bar{D}} \frac{z f^{\prime}(z)}{f(z)} d z \in \Lambda . \tag{2}
\end{equation*}
$$

Note that the integrand $z f^{\prime}(z) / f(z)$ is not periodic.
You are welcome to take the following steps. You may want to use the fact that log is actually a multifunction, so that if C is a contour from α to β, and if g is any continuous, nonvanishing function on C, then

$$
\int_{C} \frac{g^{\prime}(z)}{g(z)} d z=\left.\log (g(z))\right|_{\alpha} ^{\beta} \in(\log (\beta)-\log (\alpha))+2 \pi i \mathbb{Z} .
$$

(a) Show that $\int_{C_{3}} \frac{z f^{\prime}(z)}{f(z)} d z=\int_{-C_{1}} \frac{z f^{\prime}\left(z+\omega_{2}\right)}{f\left(z+\omega_{2}\right)} d z+\omega_{2} \int_{C_{3}} \frac{f^{\prime}(z)}{f(z)} d z$. (HINT: $z f^{\prime}(z) / f(z)=(z-$ $\left.\omega_{2}\right) f^{\prime}(z) / f(z)+\omega_{2} f^{\prime}(z) / f(z)$.)
(b) Show that $\int_{\mathcal{C}_{1}+C_{3}} \frac{z f^{\prime}(z)}{f(z)} d z \in 2 \pi i \omega_{2} \mathbb{Z}$.
(c) Show (2).
4. Suppose f is meromorphic and Λ-periodic. Let D be a fundamental domain for Λ as in (1), and suppose that f has no zeros or poles on $\partial \bar{D}$.
Suppose the only zeros of f in D are P_{1}, \cdots, P_{r}, and that f has a zero of order m_{i} at P_{i}. Similarly, suppose the only poles of f in D are Q_{1}, \cdots, Q_{s}, and that f has a pole of order n_{j} at Q_{j}. Show that

$$
\sum_{i=1}^{r} m_{i} P_{i} \equiv \sum_{j=1}^{s} n_{j} Q_{j} \bmod \wedge .
$$

