Homework 3 Due: Friday, September 7

1. Since $\mathbb{Z}[2i] \subset \mathbb{Z}[i]$, the "multiplication by one" map induces a map of elliptic curves

- (a) Describe all $P \in V_1$ such that $\varpi_2 \circ \tilde{f}(P) = \varpi_2(0)$.
- (b) What is ker *f*?
- (c) Repeats parts (a) and (b) when $\mathbb{Z}[2i]$ is replaced with $\mathbb{Z}[ni]$ for an arbitrary natural number *n*.
- 2. Let *h* be a meromorphic function, and suppose $z_0 \in \mathbb{C}$, $z_0 \neq 0$. Show that

$$\operatorname{res}_{z_0}(\frac{zh'(z)}{h(z)}) = \operatorname{ord}_{z_0}(h) \cdot z_0$$

3. Let $\Lambda \subset \mathbb{C}$ be a lattice, and suppose f is a Λ -periodic function. Let D be a fundamental domain as in (1)

$$C^{*} \qquad D \qquad C^{*} \qquad C_{1} \qquad C_{2} \qquad C_{3} \qquad z_{0} + \omega_{1} + \omega_{2}$$

$$C^{*} \qquad D \qquad C^{*} \qquad C_{2} \qquad C^{*} \qquad C^{*$$

so that that *f* has no poles or zeros on $\partial \overline{D}$. Show that:

$$\frac{1}{2\pi i} \int_{\partial \overline{D}} \frac{zf'(z)}{f(z)} dz \in \Lambda.$$
 (2)

Note that the integrand zf'(z)/f(z) is *not* periodic.

You are welcome to take the following steps. You may want to use the fact that log is actually a multifunction, so that if *C* is a contour from α to β , and if *g* is any continuous, nonvanishing function on *C*, then

$$\int_{C} \frac{g'(z)}{g(z)} dz = \log(g(z)) \Big|_{\alpha}^{\beta} \in (\operatorname{Log}(\beta) - \operatorname{Log}(\alpha)) + 2\pi i \mathbb{Z}.$$

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007

- (a) Show that $\int_{C_3} \frac{zf'(z)}{f(z)} dz = \int_{-C_1} \frac{zf'(z+\omega_2)}{f(z+\omega_2)} dz + \omega_2 \int_{C_3} \frac{f'(z)}{f(z)} dz$. (HINT: $zf'(z)/f(z) = (z-\omega_2)f'(z)/f(z) + \omega_2 f'(z)/f(z)$.)
- (b) Show that $\int_{C_1+C_3} \frac{zf'(z)}{f(z)} dz \in 2\pi i \omega_2 \mathbb{Z}$.
- (c) Show (2).
- 4. Suppose *f* is meromorphic and Λ -periodic. Let *D* be a fundamental domain for Λ as in (1), and suppose that *f* has no zeros or poles on $\partial \overline{D}$.

Suppose the only zeros of f in D are P_1, \dots, P_r , and that f has a zero of order m_i at P_i . Similarly, suppose the only poles of f in D are Q_1, \dots, Q_s , and that f has a pole of order n_j at Q_j . Show that

$$\sum_{i=1}^r m_i P_i \equiv \sum_{j=1}^s n_j Q_j \bmod \Lambda.$$

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007