Homework 2

Due: Friday, August 31
Throughout this problem set, fix a lattice $\wedge \subset \mathbb{C}$.
Please review basic facts about contour integrals, residues, etc.

1. The Weierstrass σ-function is

$$
\sigma(z)=z \cdot \prod_{\lambda \in \Lambda^{\prime}}\left(1-\frac{z}{\lambda}\right) \exp \left(-\frac{z}{\lambda}+\left(\frac{z}{\lambda}\right)^{2} / 2\right) .
$$

(For the purposes of this exercise, infinite products essentially behave like infinite sums; if the terms go to 1 sufficiently rapidly, then convergence is absolute and uniform.) This defines a holomorphic function on all of \mathbb{C}, with simple zeros at each $\lambda \in \Lambda$, and nonvanishing elsewhere.
(a) Show that for $z \in \mathbb{C}-\Lambda$,

$$
\frac{d^{2}}{d z^{2}} \log \sigma(z)=-\wp(z)
$$

(b) Suppose $\lambda \in \Lambda$. Show that there are constants $a_{\lambda}, b_{\lambda} \in \mathbb{C}$ such that for all $z \in \mathbb{C}$,

$$
\sigma(z+\lambda)=\exp \left(a_{\lambda} z+b_{\lambda}\right) \sigma(z) .
$$

(HINT: Given part (a), what can you say about $\log (\sigma(z+\lambda))$?)
2. [cf. Debarre, Remark 2.4] Let $D \subset \mathbb{C}$ be a fundamental domain for Λ which contains the origin.
Fix $z_{0} \in D, z_{0} \neq 0$, and consider the function

$$
\psi(z)=\wp(z)-\wp\left(z_{0}\right) .
$$

(a) Describe the poles of $\psi(z)$.
(b) Show that $\psi(z)$ has exactly two zeros in D, counted with multiplicity.
(c) What are the zeros of ψ ? (HINT: \wp is an even function.)
3. Suppose that $\alpha \in \mathbb{C}$ satisfies $\alpha \Lambda \subseteq \Lambda$. Show that α is actually an algebraic integer, of degree at most 2. (In other words, show that α satisfies a polynomial of the form $X^{2}+p X+q=0$, with $p, q \in \mathbb{Z}$.) (Hint: Choose a basis $\left\{\omega_{1}, \omega_{2}\right\}$, and think of α as a linear transformation from \wedge to itself. This means you can write down α as a matrix. What can you say about its characteristic polynomial?)
Extra credit: In the situation of the previous problem, suppose $\alpha \notin \mathbb{Z}$. Show that α is an imaginary quadratic integer.

