Homework 2 Due: Friday, August 31

Throughout this problem set, fix a lattice $\Lambda \subset \mathbb{C}$. Please review basic facts about contour integrals, residues, etc.

1. The Weierstrass σ -function is

$$\sigma(z) = z \cdot \prod_{\lambda \in \Lambda'} (1 - \frac{z}{\lambda}) \exp(-\frac{z}{\lambda} + (\frac{z}{\lambda})^2/2).$$

(For the purposes of this exercise, infinite products essentially behave like infinite sums; if the terms go to 1 sufficiently rapidly, then convergence is absolute and uniform.) This defines a holomorphic function on all of \mathbb{C} , with simple zeros at each $\lambda \in \Lambda$, and nonvanishing elsewhere.

(a) Show that for $z \in \mathbb{C} - \Lambda$,

$$\frac{d^2}{dz^2}\log\sigma(z) = -\wp(z).$$

(b) Suppose $\lambda \in \Lambda$. Show that there are constants $a_{\lambda}, b_{\lambda} \in \mathbb{C}$ such that for all $z \in \mathbb{C}$,

$$\sigma(z+\lambda) = \exp(a_{\lambda}z + b_{\lambda})\sigma(z).$$

(HINT: *Given part (a), what can you say about* $\log(\sigma(z + \lambda))$?)

2. [cf. Debarre, Remark 2.4] Let $D \subset \mathbb{C}$ be a fundamental domain for Λ which contains the origin.

Fix $z_0 \in D$, $z_0 \neq 0$, and consider the function

$$\psi(z) = \wp(z) - \wp(z_0).$$

- (a) Describe the poles of $\psi(z)$.
- (b) Show that $\psi(z)$ has exactly two zeros in *D*, counted with multiplicity.
- (c) What are the zeros of ψ ? (HINT: \wp *is an even function.*)
- 3. Suppose that $\alpha \in \mathbb{C}$ satisfies $\alpha \Lambda \subseteq \Lambda$. Show that α is actually an algebraic integer, of degree at most 2. (In other words, show that α satisfies a polynomial of the form $X^2 + pX + q = 0$, with $p, q \in \mathbb{Z}$.) (HINT: Choose a basis $\{\omega_1, \omega_2\}$, and think of α as a linear transformation from Λ to itself. This means you can write down α as a matrix. What can you say about its characteristic polynomial?)

Extra credit: In the situation of the previous problem, suppose $\alpha \notin \mathbb{Z}$ *. Show that* α *is an* imaginary *quadratic integer.*

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007