Homework 12 Due: Friday, November 9

- 1. *Either do Debarre problem 4.1, or:* Let $V = \mathbb{C}^n$, and let $\Lambda \subset V$ be a lattice.
 - (a) Let *f* be a holomorphic function on (all of) *V*. Suppose there is a constant *d* such that for each *j*, $1 \le j \le n$, we have

$$\frac{\partial f(z)}{\partial z_i} = d.$$

Show that f is a polynomial of degree (at most) two. (HINT: If f is entire, then it has a Taylor expansion valid everywhere.)

(b) Suppose that θ is a theta function for Λ which is nowhere vanishing. Show there is a polynomial P(z) of degree at most two such that

$$\theta(z) = \tilde{e}(P(z)).$$

(HINT: Consider the function $\log \theta(z)$. (Why is this well-defined?))

2. Suppose σ is in the *lower* half-plane, i.e., $im(\sigma) < 0$.

Does the series

$$\sum_{m\in\mathbb{Z}}\widetilde{e}(\frac{1}{2}(\sigma m^2)+mz)$$

define a function on \mathbb{C} ? Explain.

3. *Riemann's theta function really is a theta function* Let e_1, \dots, e_g be a basis for $V = \mathbb{C}^g$. If $\tau \in \mathfrak{h}_g$, we have defined a lattice $\Lambda_\tau \subset V$; its basis vectors are $\{e_1, \dots, e_g\}$ and the columns of τ . Riemann's theta function is

$$\vartheta(z) = \vartheta(z, \tau) = \sum_{m \in \mathbb{Z}^{g}} \widetilde{e}(\frac{1}{2}(m^{T}\tau m) + m^{T}z).$$

Suppose $n \in \mathbb{Z}^g$.

(a) Show that

$$\vartheta(z+n)=\vartheta(z).$$

(b) Show that

$$\vartheta(z+\tau n) = \widetilde{e}(-\frac{1}{2}n^T\tau n - n^Tz)\vartheta(z).$$

- (c) Compare this to the transformation rules for the one-dimensional theta functions.
- 4. Write a few sentences about the subject of your final project.

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007