Homework 10 Due: Friday, October 26

- 1. Consider the usual covering $\mathbb{P}^1 = U_0 \cup U_1$; recall that $U_0 = \mathbb{P}^1 \{[0,1]\} \cong \mathbb{C}$ and $U_1 = \mathbb{P}^1 \{[1,0]\}$.
 - (a) Let *z* be the coordinate on U_0 , and let *w* be the coordinate on U_1 . Describe the function $\phi_1 \circ \phi_0^{-1}$. How are *w* and *z* related?
 - (b) Suppose that w is a meromorphic one-form^{*} on \mathbb{P}^1 defined by f(z)dz on U_0 and g(w)dw on U_1 . Show that

$$f(z) = g(1/z)(-1/z^2).$$

- (c) Show that there are no non-zero holomorphic one-forms on \mathbb{P}^1 !.
- 2. Let $\Lambda \subset V \cong \mathbb{C}$ be a lattice, and let $\pi : V \to V/\Lambda = X$ be the usual projection. Suppose $\omega \in \Omega^1(X)$ is a holomorphic one-form on *X*. Then $\pi^* \omega$ is a periodic holomorphic one-form on *V*.[†]
 - (a) Show that $\pi^* \omega = adz$ for some $a \in \mathbb{C}$. (HINT: If $\eta \in \Omega^1(V)$, then there is some function $f \in \mathcal{H}(V)$ such that $\eta = f(z)dz$.)
 - (b) What is dim_{\mathbb{C}} $\Omega^1_X(X)$?
- 3. Let *V* be a finite-dimensional vector space over \mathbb{C} . A Hermitian form on *V* is a map

$$V \times V \xrightarrow{H} \mathbb{C}$$

such that:

$$H(u_1 + u_2, v) = H(u_1, v) + H(u_2, v)$$
$$H(au_1, v) = aH(u_1, v)$$

•

$$H(u,v) = H(v,u)$$

*If z is a coordinate on an open subset $V \subset \mathbb{C}$, a meromorphic one-form on V is an expression f(z)dz, where $f(z) \in \mathcal{M}(V)$ is a meromorphic function on V. It turns out that any one-form on \mathbb{P}^1 can be written down using the cover $\mathbb{P}^1 = U_0 \cup U_1$; one need not further subdivide either of the U_i 's.

[†]In other words, for each $\lambda \in \Lambda$, if $T_{\lambda} : V \to V$ is the translation map, then $T_{\lambda}^*(\pi^* \omega) = \pi^* \omega$.

Professor Jeff Achter Colorado State University M619: Complex analysis II Fall 2007 Suppose *H* is a Hermitian form on *V*. Write the real and imaginary parts of *H* as *S* and *E*, so that

$$H(u,v) = S(u,v) + iE(u,v)$$

where $S, E: V \times V \rightarrow \mathbb{R}$ are real bilinear.

Show that:

$$H(u,av) = \overline{a}H(u,v) \tag{1}$$

$$H(u,u) \in \mathbb{R} \tag{2}$$

$$S(u, v) = E(iu, v) \tag{3}$$

$$S(iu, iv) = S(u, v)$$

$$E(iu, iv) = E(u, v)$$
(4)

$$E(u, v) = E(u, v)$$
(5)
$$S(u, v) = S(v, u)$$
(6)

$$S(u, v) = S(v, u)$$
 (0)

$$E(u,v) = -E(v,u) \tag{7}$$

These should all be very brief.

4. It's time to start thinking about a topic for your final project. You can find a (growing, farfrom-comprehensive) list of possible topics at

http://www.math.colostate.edu/~achter/619/help/proj.html