Homework 10

Due: Friday, October 26

1. Consider the usual covering $\mathbb{P}^{1}=U_{0} \cup U_{1}$; recall that $U_{0}=\mathbb{P}^{1}-\{[0,1]\} \cong \mathbb{C}$ and $U_{1}=$ $\mathbb{P}^{1}-\{[1,0]\}$.
(a) Let z be the coordinate on U_{0}, and let w be the coordinate on U_{1}. Describe the function $\phi_{1} \circ \phi_{0}^{-1}$. How are w and z related?
(b) Suppose that ω is a meromorphic one-form*on \mathbb{P}^{1} defined by $f(z) d z$ on U_{0} and $g(w) d w$ on U_{1}. Show that

$$
f(z)=g(1 / z)\left(-1 / z^{2}\right)
$$

(c) Show that there are no non-zero holomorphic one-forms on \mathbb{P}^{1} !.
2. Let $\Lambda \subset V \cong \mathbb{C}$ be a lattice, and let $\pi: V \rightarrow V / \Lambda=X$ be the usual projection.

Suppose $\omega \in \Omega^{1}(X)$ is a holomorphic one-form on X. Then $\pi^{*} \omega$ is a periodic holomorphic one-form on V 回
(a) Show that $\pi^{*} \omega=a d z$ for some $a \in \mathbb{C}$.
(HinT: If $\eta \in \Omega^{1}(V)$, then there is some function $f \in \mathcal{H}(V)$ such that $\eta=f(z) d z$.)
(b) What is $\operatorname{dim}_{\mathbb{C}} \Omega_{X}^{1}(X)$?
3. Let V be a finite-dimensional vector space over \mathbb{C}. A Hermitian form on V is a map

$$
V \times V \xrightarrow{H} \mathbb{C}
$$

such that:
-

$$
\begin{aligned}
H\left(u_{1}+u_{2}, v\right) & =H\left(u_{1}, v\right)+H\left(u_{2}, v\right) \\
H\left(a u_{1}, v\right) & =a H\left(u_{1}, v\right)
\end{aligned}
$$

-

$$
H(u, v)=\overline{H(v, u)}
$$

[^0]Suppose H is a Hermitian form on V. Write the real and imaginary parts of H as S and E, so that

$$
H(u, v)=S(u, v)+i E(u, v)
$$

where $S, E: V \times V \rightarrow \mathbb{R}$ are real bilinear.
Show that:

$$
\begin{align*}
H(u, a v) & =\bar{a} H(u, v) \tag{1}\\
H(u, u) & \in \mathbb{R} \tag{2}\\
S(u, v) & =E(i u, v) \tag{3}\\
S(i u, i v) & =S(u, v) \tag{4}\\
E(i u, i v) & =E(u, v) \tag{5}\\
S(u, v) & =S(v, u) \tag{6}\\
E(u, v) & =-E(v, u) \tag{7}
\end{align*}
$$

These should all be very brief.
4. It's time to start thinking about a topic for your final project. You can find a (growing, far-from-comprehensive) list of possible topics at
http://www.math.colostate.edu/~achter/619/help/proj.html

[^0]: ${ }^{*}$ If z is a coordinate on an open subset $V \subset \mathbb{C}$, a meromorphic one-form on V is an expression $f(z) d z$, where $f(z) \in \mathcal{M}(V)$ is a meromorphic function on V. It turns out that any one-form on \mathbb{P}^{1} can be written down using the cover $\mathbb{P}^{1}=U_{0} \cup U_{1}$; one need not further subdivide either of the U_{j} 's.
 ${ }^{\dagger}$ In other words, for each $\lambda \in \Lambda$, if $T_{\lambda}: V \rightarrow V$ is the translation map, then $T_{\lambda}^{*}\left(\pi^{*} \omega\right)=\pi^{*} \omega$.

