Homework 1

Due: Friday, August 24

1. Given elements $\alpha, \beta \in \mathbb{C}$, the (additive) subgroup they generate is:

$$
G_{\alpha, \beta}=\{m \alpha+n \beta: m, n \in \mathbb{Z}\}
$$

(a) Give an example where $G_{\alpha, \beta} \cong \mathbb{Z}$.
(b) Give an example where $G_{\alpha, \beta} \cong \mathbb{Z} \oplus \mathbb{Z}$, but $G_{\alpha, \beta}$ is not a lattice.
2. Suppose $\wedge \subset \mathbb{C}$ is a lattice, and f is a holomorphic function which is Λ-periodic. Prove that f is constant.
3. Suppose $\Lambda \subset \mathbb{C}$ is a lattice, with ordered basis $\left\{\omega_{1}, \omega_{2}\right\}$. Let D be the (open) parallelogram $\left\{s \omega_{1}+t \omega_{2}: 0<s, t<1\right\}$, and let C be a simple, positive closed contour around the boundary of \bar{D}. (For example, C is the piecewise-linear contour which visits, successively, 0 , $\omega_{1}, \omega_{1}+\omega_{2}, \omega_{2}$, and back to 0 .)
Suppose that f is meromorphic, Λ-periodic, and has no poles along C. Show that $\int_{C} f(z) d z=$ 0.

