Homework Due: Friday, April 17

- 1. Let E/Q be an elliptic curve. Use the canonical height \hat{h} (see HW 7) to (re)prove:
 - (a) The torsion group of $E(\mathbb{Q})$ is finite.
 - (b) Let $m \ge 2$ be an integer such that $E(\mathbb{Q})/mE(\mathbb{Q})$ is finite. Then $E(\mathbb{Q})$ is finitely generated. (HINT: Let $\{Q_1, \cdots, Q_r\} \in E(\mathbb{Q})$ be representatives for $E(\mathbb{Q})/mE(\mathbb{Q})$, and let $A = 2\max_i \hat{h}(Q_i)$. Show there is a constant C < 1 such that if $P, R \in E(\mathbb{Q})$, $\hat{h}(P) > A$, and $P Q_i = mR$, then

$$\hat{\mathbf{h}}(\mathbf{R}) \leqslant C\hat{\mathbf{h}}(\mathbf{P}).$$

2. The Néron-Tate pairing on E(Q) is

)

$$\mathsf{E}(\mathbb{Q}) \times \mathsf{E}(\mathbb{Q}) \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{R}$$

 $(\mathbf{P}, \mathbf{Q}) \longmapsto \hat{\mathbf{h}}(\mathbf{P} + \mathbf{Q}) - \hat{\mathbf{h}}(\mathbf{P}) - \hat{\mathbf{h}}(\mathbf{Q}).$

- (a) Show that $\langle \cdot, \cdot \rangle$ is a \mathbb{Z} -bilinear symmetric form.
- (b) Suppose $P_1, \dots, P_r \in E(\mathbb{Q})$. Define a matrix A with entries

$$A_{ij} = \langle P_i, P_j \rangle.$$

Show that the points P_1, \dots, P_r are linearly independent in $E(\mathbb{Q})$ if and only if $det(A) \neq 0$.

3. Let $G = \langle \sigma \rangle$ be a cyclic group of order r, let M be a G-module, and let $f : G \to M$ be a crossed homomorphism.

Let $\mathfrak{m} = \mathfrak{f}(\sigma)$.

- (a) Explain how to calculate $f(\sigma^i)$ for each i.
- (b) Show that m must satisfy

$$\mathfrak{m} + \sigma \mathfrak{m} + \sigma^2 \mathfrak{m} + \dots + \sigma^{r-1} \mathfrak{m} = 0.$$
 (1)

- (c) Conversely, let $n \in M$ be any element which satisfies (1). Show that there is a crossed homomorphism $g : G \to M$ such that $g(\sigma) = m$.
- 4. Let L/K be a cyclic extension of degree r, and let σ generate Gal(L/K).

If $\alpha \in L^{\times}$, its norm is

$$N_{L/K}(\alpha) = \prod_{i=0}^{r-1} \sigma^i(\alpha).$$

Professor Jeff Achter Colorado State University Math 605C: Number theory Spring 2015 (Warmup: Show that $N_{L/K}(\alpha) \in K^{\times}$.)

Show that our cohomological version of Hilbert's Theorem 90 (($H^1(Gal(L/K), L^{\times}) = 1$) implies the following classical form:

Suppose $\alpha \in L^{\times}$ satisfies $N_{L/K}(\alpha) = 1$. Then there exists some $\beta \in L^{\times}$ such that $\alpha = \beta/\sigma(\beta)$.

- (a) Show that there is a crossed homomorphism $f : G \to L^{\times}$ such that $f(\sigma) = \alpha$. (HINT: *Use the multiplicative version of Problem* (3).)
- (b) What does Hilbert 90 say about this f?
- 5. Here is a somewhat modern treatment of Pythagorean triples. Let a, b and c be nonzero integers such that

$$a^2 + b^2 = c^2$$

Use Hilbert 90 to show that

$$(a, b, c)$$
 is proportional to $(m^2 - n^2, 2mn, m^2 + n^2)$ (2)

for certain integers m and n, as follows.

We will need the field $\mathbb{Q}(\mathfrak{i})$; it is a quadratic (thus cyclic) extension of \mathbb{Q} , with Galois group $\operatorname{Gal}(\mathbb{Q}(\mathfrak{i})/\mathbb{Q})$ generated by $\sigma : x + \mathfrak{i}y \mapsto x - \mathfrak{i}y$.

(a) Consider the number

$$\alpha = \frac{a+b\mathfrak{i}}{c} \in Q(\mathfrak{i}).$$

Show there exists $\beta \in \mathbb{Q}(\mathfrak{i})^{\times}$ such that

$$\frac{\beta}{\sigma(\beta)} = \alpha$$

(HINT: What is $N_{Q(i)/Q}(\alpha)$?)

(b) Choose some $r \in \mathbb{Z}$ such that $r\beta = m + in \in \mathbb{Z}[i]$. Show that

$$\alpha = \frac{(m^2 - n^2) + i(2mn)}{m^2 + n^2}$$

(HINT: $\beta/\sigma(\beta) = r\beta/\sigma(r\beta)$.)

(c) Show that (2) holds.

Professor Jeff Achter Colorado State University Math 605C: Number theory Spring 2015