Homework
 Due: Friday, April 17

1. Let E / Q be an elliptic curve. Use the canonical height \hat{h} (see HW 7) to (re)prove:
(a) The torsion group of $E(Q)$ is finite.
(b) Let $m \geqslant 2$ be an integer such that $E(Q) / m E(Q)$ is finite. Then $E(Q)$ is finitely generated. (HINT: Let $\left\{\mathrm{Q}_{1}, \cdots, \mathrm{Q}_{r}\right\} \in \mathrm{E}(\mathrm{Q})$ be representatives for $\mathrm{E}(\mathrm{Q}) / \mathrm{mE}(\mathrm{Q})$, and let $\mathrm{A}=$ 2 max $_{i} \hat{h}\left(Q_{i}\right)$. Show there is a constant $C<1$ such that if $P, R \in E(Q), \hat{h}(P)>A$, and $P-Q_{i}=m R$, then

$$
\hat{h}(R) \leqslant C \hat{h}(P)
$$

)
2. The Néron-Tate pairing on $E(Q)$ is

$$
\begin{aligned}
& E(Q) \times E(Q) \xrightarrow{\langle\cdot, \cdot\rangle} \\
&(P, Q) \longmapsto \\
& \longrightarrow \hat{h}(P+Q)-\hat{h}(P)-\hat{h}(Q) .
\end{aligned}
$$

(a) Show that $\langle\cdot, \cdot\rangle$ is a \mathbb{Z}-bilinear symmetric form.
(b) Suppose $P_{1}, \cdots, P_{r} \in E(Q)$. Define a matrix A with entries

$$
A_{i j}=\left\langle\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{j}}\right\rangle .
$$

Show that the points P_{1}, \cdots, P_{r} are linearly independent in $E(Q)$ if and only if $\operatorname{det}(A) \neq$ 0.
3. Let $G=\langle\sigma\rangle$ be a cyclic group of order r, let M be a G-module, and let $f: G \rightarrow M$ be a crossed homomorphism.
Let $\mathrm{m}=\mathrm{f}(\sigma)$.
(a) Explain how to calculate $f\left(\sigma^{i}\right)$ for each i.
(b) Show that m must satisfy

$$
\begin{equation*}
m+\sigma m+\sigma^{2} m+\cdots+\sigma^{r-1} m=0 . \tag{1}
\end{equation*}
$$

(c) Conversely, let $n \in M$ be any element which satisfies (1). Show that there is a crossed homomorphism $\mathrm{g}: \mathrm{G} \rightarrow \mathrm{M}$ such that $\mathrm{g}(\sigma)=\mathrm{m}$.
4. Let L / K be a cyclic extension of degree r , and let σ generate $\mathrm{Gal}(\mathrm{L} / \mathrm{K})$.

If $\alpha \in \mathrm{L}^{\times}$, its norm is

$$
\mathrm{N}_{\mathrm{L} / \mathrm{K}}(\alpha)=\prod_{i=0}^{\mathrm{r}-1} \sigma^{i}(\alpha)
$$

Professor Jeff Achter
(Warmup: Show that $\mathrm{N}_{\mathrm{L} / \mathrm{K}}(\alpha) \in \mathrm{K}^{\times}$.)
Show that our cohomological version of Hilbert's Theorem $90\left(\left(\mathrm{H}^{1}\left(\mathrm{Gal}(\mathrm{L} / \mathrm{K}), \mathrm{L}^{\times}\right)=1\right) \mathrm{im}\right.$ plies the following classical form:
Suppose $\alpha \in L^{\times}$satisfies $N_{L / K}(\alpha)=1$. Then there exists some $\beta \in L^{\times}$such that $\alpha=\beta / \sigma(\beta)$.
(a) Show that there is a crossed homomorphism $f: G \rightarrow L^{\times}$such that $f(\sigma)=\alpha$. (Hint: Use the multiplicative version of Problem (3).)
(b) What does Hilbert 90 say about this f ?
5. Here is a somewhat modern treatment of Pythagorean triples. Let a, b and c be nonzero integers such that

$$
a^{2}+b^{2}=c^{2}
$$

Use Hilbert 90 to show that

$$
\begin{equation*}
(a, b, c) \text { is proportional to }\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right) \tag{2}
\end{equation*}
$$

for certain integers m and n, as follows.
We will need the field $\mathbb{Q}(i)$; it is a quadratic (thus cyclic) extension of \mathbb{Q}, with Galois group $\operatorname{Gal}(\mathbb{Q}(\mathfrak{i}) / \mathrm{Q})$ generated by $\sigma: x+\mathfrak{i y} \mapsto x-i y$.
(a) Consider the number

$$
\alpha=\frac{a+b i}{c} \in \mathbb{Q}(i) .
$$

Show there exists $\beta \in \mathbb{Q}(\mathfrak{i})^{\times}$such that

$$
\frac{\beta}{\sigma(\beta)}=\alpha .
$$

(Hint: What is $\mathrm{N}_{\mathrm{Q}(\mathrm{i}) / \mathrm{Q}}(\alpha)$?)
(b) Choose some $r \in \mathbb{Z}$ such that $r \beta=m+i n \in \mathbb{Z}[i]$. Show that

$$
\alpha=\frac{\left(m^{2}-n^{2}\right)+i(2 m n)}{m^{2}+n^{2}} .
$$

(Hint: $\beta / \sigma(\beta)=r \beta / \sigma(r \beta)$.)
(c) Show that (2) holds.

