Homework Due: Friday, April 10

1. Fix $P_0 \in E(\mathbb{Q})$. Show that there exists some $B = B(P_0, E)$ such that, for all $P \in E(\mathbb{Q})$,

$$h(P_0 + P) \leqslant 2h(P) + B.$$

2. There is a slightly different height function \hat{h} which is harder to define, but easier to work with, than the usual height.

Recall that given E/\mathbb{Q} , there is a constant A such that, for each $P \in E(\mathbb{Q})$,

$$|\mathsf{h}(\mathsf{2P}) - \mathsf{4h}(\mathsf{P})| \leqslant \mathsf{A}$$

(a) Show that

$$\left|\frac{1}{4^{\mathfrak{n}}}\mathfrak{h}(2^{\mathfrak{n}}\mathsf{P})-\mathfrak{h}(\mathsf{P})\right| \leqslant \mathsf{A}\sum_{1\leqslant j\leqslant \mathfrak{n}}\frac{1}{4^{j}}.$$

(b) Show that the sequence of numbers

$$\{\frac{1}{4^n}h(2^nP)\}$$

is Cauchy.

Then, one defines

$$\hat{h}(P) = \lim_{n \to \infty} \frac{1}{4^n} h(2^n P).$$

3. Show that for each M,

$$\{P \in E(\mathbb{Q}) : \hat{h}(P) < M\}$$

is finite. (HINT: Use (a) to show the existence of a B = B(E) such that $|h(P) - \hat{h}(P)| < B$.)

4. (a) Show that for each $P \in E(\mathbb{Q})$,

$$\hat{h}(2P) = 4\hat{h}(P).$$

(b) It turns out that, for any $P, Q \in E(\mathbb{Q})$,

$$\hat{\mathbf{h}}(\mathbf{P}+\mathbf{Q}) + \hat{\mathbf{h}}(\mathbf{P}-\mathbf{Q}) = 2\hat{\mathbf{h}}(\mathbf{P}) + 2\hat{\mathbf{h}}(\mathbf{Q})$$

Use to this to show that for each m,

$$\hat{\mathbf{h}}(\mathbf{m}\mathbf{P}) = \mathbf{m}^2 \hat{\mathbf{h}}(\mathbf{P}).$$

- 5. (a) Suppose $P \in E(\mathbb{Q})$ is a torsion point. Show that $\hat{h}(P) = 0$. (HINT: *The set* $\{2^nP : n \ge 1\}$ *is finite.*)
 - (b) Suppose ĥ(P) = 0. Show that P is torsion.
 (HINT: *The set* {mP : m ≥ 1} *has bounded height.*)

Professor Jeff Achter Colorado State University Math 605C: Number theory Spring 2015