Homework

Due: Friday, April 10

1. Fix $P_{0} \in E(Q)$. Show that there exists some $B=B\left(P_{0}, E\right)$ such that, for all $P \in E(Q)$,

$$
h\left(P_{0}+P\right) \leqslant 2 h(P)+B
$$

2. There is a slightly different height function \hat{h} which is harder to define, but easier to work with, than the usual height.
Recall that given E / Q, there is a constant A such that, for each $P \in E(Q)$,

$$
|h(2 P)-4 h(P)| \leqslant A
$$

(a) Show that

$$
\left|\frac{1}{4^{n}} h\left(2^{n} P\right)-h(P)\right| \leqslant A \sum_{1 \leqslant j \leqslant n} \frac{1}{4^{j}} .
$$

(b) Show that the sequence of numbers

$$
\left\{\frac{1}{4^{n}} h\left(2^{n} P\right)\right\}
$$

is Cauchy.
Then, one defines

$$
\hat{h}(P)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} h\left(2^{n} P\right)
$$

3. Show that for each M,

$$
\{P \in E(Q): \hat{h}(P)<M\}
$$

is finite. (HINT: Use (a) to show the existence of a $\mathrm{B}=\mathrm{B}(\mathrm{E})$ such that $|\mathrm{h}(\mathrm{P})-\hat{\mathrm{h}}(\mathrm{P})|<\mathrm{B}$.)
4. (a) Show that for each $P \in E(Q)$,

$$
\hat{\mathrm{h}}(2 \mathrm{P})=4 \hat{\mathrm{~h}}(\mathrm{P}) .
$$

(b) It turns out that, for any $P, Q \in E(Q)$,

$$
\hat{h}(P+Q)+\hat{h}(P-Q)=2 \hat{h}(P)+2 \hat{h}(Q)
$$

Use to this to show that for each m,

$$
\hat{h}(m P)=m^{2} \hat{h}(P) .
$$

5. (a) Suppose $P \in E(Q)$ is a torsion point. Show that $\hat{h}(P)=0$.
(HINT: The set $\left\{2^{n} P: n \geqslant 1\right\}$ is finite.)
(b) Suppose $\hat{h}(P)=0$. Show that P is torsion.
(HINT: The set $\{\mathrm{mP}: \mathrm{m} \geqslant 1\}$ has bounded height.)
