Homework 6 Due: Friday, April 3

1. Recall the Bachet curve we studied at the beginning of the semester

$$E: y^2 = x^3 - 2. (1)$$

- (a) For which primes p does E have good reduction at p?
- (b) By explicitly examining all possible x-coordinates of points, compute $\#E(\mathbb{F}_5)$ and $\#E(\mathbb{F}_7)$.
- 2. Suppose E/Q is an elliptic curve Let $T \subseteq E(Q)_{tors}$ be the torsion subgroup.
 - (a) Show that, for each ℓ ,

$$\cup_{n \ge 1} E[\ell^n](\mathbb{Q})$$

is finite. (HINT: *Choose a prime* $p \neq l$ *of good reduction for* E.)

- (b) Show that T is finite. (HINT: Work with two different primes.)
- 3. Continue to work with the Bachet curve (1).
 - (a) Show that the torsion group of $E(\mathbb{Q})$ is trivial.
 - (b) Show that $E(\mathbb{Q})$ is infinite. (HINT: $5^2 = 3^3 2$.)
- 4. Use the

Isogeny Theorem: Suppose E_1 and E_2 are elliptic curves over \mathbb{F}_q . Then the natural map

 $\operatorname{Hom}(\mathsf{E}_1,\mathsf{E}_2)\otimes\mathbb{Z}_\ell\longrightarrow\operatorname{Hom}_{\operatorname{Gal}(\mathbb{F}_q)}(\mathsf{T}_\ell\mathsf{E}_1,\mathsf{T}_\ell\mathsf{E}_2)$

is an isomorphism

to show that, for a pair of elliptic curves $E_1, E_2/\mathbb{F}_q$, E_1 and E_2 are isogenous if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$.

5. Recall that if X/\mathbb{F}_q is a variety, then its zeta function is

$$Z_{X/\mathbb{F}_q}(T) = \exp(\sum_{n \ge 1} \#X(\mathbb{F}_{q^n}) \frac{T^n}{n}.$$

Calculate $Z_{\mathbb{P}^1/\mathbb{F}_p}(T)$.

Professor Jeff Achter Colorado State University Math 605C: Number theory Spring 2015