Homework 5 Due: Friday, February 27

Remember, you are expected to read every question, but you need only be able to answer two of them.

- 1. Let $E = C/\Lambda$ be a complex elliptic curve. Explain the following assertions:
 - (a) We have

End(E)
$$\cong$$
 { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }.

- (b) In fact, End(E) is a torsion-free ring, of rank at most 4 as an \mathbb{Z} -module.
- 2. *Continuation of* (1) Let E be a complex elliptic curve. Show that either $End(E) \cong \mathbb{Z}$ or End(E) is isomorphic to an order in a quadratic imaginary field.
- 3. Let $\alpha : E_1 \to E_2$ be a nonzero homomorphism of elliptic curves. Show that
 - (a) ker(α) is finite.
 - (b) In particular, there is some N such that $N \cdot ker(\alpha) = 0$.
- 4. (a) Let $\alpha : X \to Y$ be a nonconstant morphism of smooth, projective curves. Sketch briefly why there is a group homomorphism

$$\operatorname{Pic}^{0}(Y) \xrightarrow{\alpha} \operatorname{Pic}^{0}(X)$$

(b) Let $\alpha \in \text{Hom}(E_1, E_2)$ be nonzero. Use (a) to construct a natural $\hat{\alpha} \in \text{Hom}(E_2, E_1)$. (HINT: *There is a canonical isomorphism* of varieties $E_i \xrightarrow{\sim} \text{Pic}^0(E_i)$.) It turns out that:

Theorem If deg(α) = N, then $\hat{\alpha} \circ \alpha = [N]_{E_1}$.

5. "Taking duals" is an anti-involution of End(E): If $\alpha, \beta \in End(E)$, then

$$\widehat{lpha+eta}=\widehat{lpha}+\widehat{eta}\ \widehat{lpha\circeta}=\widehat{eta}\circ\widehat{lpha}$$

Show by induction that, for each positive integer m, $\widehat{[m]} = [m]$. (The claim is trivial for m = 1.)

Professor Jeff Achter Colorado State University Math 605C: Number theory Spring 2015