Homework 5

Due: Friday, February 27

Remember, you are expected to read every question, but you need only be able to answer two of them.

1. Let $\mathrm{E}=\mathbb{C} / \Lambda$ be a complex elliptic curve. Explain the following assertions:
(a) We have

$$
\operatorname{End}(E) \cong\{\alpha \in \mathbb{C}: \alpha \Lambda \subseteq \Lambda\}
$$

(b) In fact, $\operatorname{End}(E)$ is a torsion-free ring, of rank at most 4 as an \mathbb{Z}-module.
2. Continuation of (1) Let E be a complex elliptic curve. Show that either End $(E) \cong \mathbb{Z}$ or $\operatorname{End}(E)$ is isomorphic to an order in a quadratic imaginary field.
3. Let $\alpha: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ be a nonzero homomorphism of elliptic curves. Show that
(a) $\operatorname{ker}(\alpha)$ is finite.
(b) In particular, there is some N such that $N \cdot \operatorname{ker}(\alpha)=\mathcal{O}$.
4. (a) Let $\alpha: X \rightarrow Y$ be a nonconstant morphism of smooth, projective curves. Sketch briefly why there is a group homomorphism

$$
\operatorname{Pic}^{0}(Y) \xrightarrow{\alpha} \operatorname{Pic}^{0}(X)
$$

(b) Let $\alpha \in \operatorname{Hom}\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)$ be nonzero. Use (a) to construct a natural $\hat{\alpha} \in \operatorname{Hom}\left(\mathrm{E}_{2}, \mathrm{E}_{1}\right)$. (HINT: There is a canonical isomorphism of varieties $\mathrm{E}_{\boldsymbol{i}} \xrightarrow{\sim} \operatorname{Pic}^{0}\left(\mathrm{E}_{\boldsymbol{i}}\right)$.) It turns out that:

Theorem If $\operatorname{deg}(\alpha)=N$, then $\hat{\alpha} \circ \alpha=[N]_{E_{1}}$.
5. "Taking duals" is an anti-involution of $\operatorname{End}(E):$ If $\alpha, \beta \in \operatorname{End}(E)$, then

$$
\begin{aligned}
& \widehat{\alpha+\beta}=\widehat{\alpha}+\widehat{\beta} \\
& \widehat{\alpha \circ \beta}=\widehat{\beta} \circ \widehat{\alpha}
\end{aligned}
$$

Show by induction that, for each positive integer $m, \widehat{[m]}=[m]$.
(The claim is trivial for $m=1$.)

