Homework 4

Due: Friday, February 20

1. Consider an elliptic curve with affine equation

$$
y^{2}=x^{3}+a x^{2}+b x+c .
$$

(a) Recall (HW2\#2) or look up the duplication formula for a point. Use your formula to algebraically compute

$$
\operatorname{ker}([2]):=\{\mathrm{P} \in \mathrm{E}(\overline{\mathrm{~K}}): 2 \mathrm{P}=\mathcal{O}\} .
$$

(b) Find a formula for $[3] \mathrm{P}:=\mathrm{P}+\mathrm{P}+\mathrm{P}$.
(c) Use your formula to calculate

$$
\#\{P \in E(\bar{K}):[3] P=\mathcal{O}\} .
$$

2. Let $\mathrm{E}=\mathbb{C} / \wedge$ be a complex elliptic curve, with uniformizing map

$$
\mathbb{C} \xrightarrow{\oplus} \mathrm{E}=\mathbb{C} / \Lambda
$$

(a) For a natural number N , what is

$$
\{z \in \mathbb{C}: N \varpi(z)=\mathcal{O}\} ?
$$

(b) Describe the group

$$
\mathrm{E}[\mathrm{~N}](\mathbb{C})=\{\varpi(z) \in \mathbb{C} / \Lambda: \mathrm{N} \varpi(z)=\mathcal{O}\} .
$$

3. Let $\Lambda \subset \mathbb{C}$ be a lattice. Suppose that $\alpha \in \mathbb{C}$ satisfies $\alpha \Lambda \subseteq \Lambda$.
(a) Show that α is actually an algebraic integer, of degree at most 2. (In other words, show that α satisfies a polynomial of the form $X^{2}+p X+q=0$, with $p, q \in \mathbb{Z}$.)
(Hint: Choose a basis $\left\{\omega_{1}, \omega_{2}\right\}$, and think of α as a linear transformation from Λ to itself. This means you can write down α as a matrix. What can you say about its characteristic polynomial?)
(b) Suppose $\alpha \notin \mathbb{Z}$. Show that α is an imaginary quadratic integer.
4. Try this one after we work with the Rigidity Lemma in class.

Let X be an irreducible, projective, group variety. (In other words, X is equipped with a group law

$$
X \times X \xrightarrow{\mu} X
$$

which satisifies the usual axioms.)
Show that this group law is commutative.

