Homework 3

Due: Friday, February 13

1. [Associativity] Suppose $P, Q, R \in E(K)$; we wish to show that

$$
(P+Q)+R=P+(Q+R)
$$

where $S+T=(S * T) * \mathcal{O}$, and (thus) $S * T=-(S+T)$. Assume that P, Q and R are sufficiently general, in the sense that

$$
\{P, Q, R, P+Q, P+R, Q+R\}
$$

are all distinct.
(a) Show that it suffices to prove that

$$
(P+Q) * R=P *(Q+R) .
$$

(b) Consider the lines

$$
\overline{P+Q: R} \text { and } \overline{P: Q+R} .
$$

Show that it suffices to show

$$
\overline{P+Q: R} \cap \overline{P: Q+R} \subset E .
$$

(c) Consider the following cubic curves, each of which is a union of three lines:

$$
\begin{aligned}
& C_{1}: \overline{Q: R} \cup \overline{P: Q+R} \cup \overline{\mathcal{O}: P+Q} \\
& C_{2}: \overline{P+Q: R} \cup \overline{Q+R: \mathcal{O}} \cup \overline{P: Q}
\end{aligned}
$$

Compute, in terms of P, Q, and R, the nine points of intersection of C_{1} and C_{2}.
(d) Finish by using the following result:

Cayley-Bacharach Theorem Let E, C_{1} and C_{2} be cubic curves, where no two contain a common component; let $C_{1} \cap C_{2}=\left\{P_{1}, \cdots, P_{9}\right\}$. Suppose E contains $\left\{\mathrm{P}_{1}, \cdots, P_{8}\right\}$. Then $P_{9} \in E$, too.
2. Sketch a proof of the Cayley-Bacharach theorem, by justifying the following claims:
(a) The set Cubics of all cubic curves is a nine-dimensional space. (Hint: $F(X, Y, Z)=0$ and $\lambda F(X, Y, Z)=0$ determine the same curve.)
(b) Let $\mathrm{P}_{1}, \cdots, \mathrm{P}_{8}$ be distinct points. Show that

$$
\operatorname{Cubics}\left(\mathrm{P}_{1}, \cdots, \mathrm{P}_{8}\right):=\left\{\mathrm{C} \in \text { Cubics : each } \mathrm{P}_{\mathrm{i}} \in \mathrm{C}\right\}
$$ is one-dimensional.

(c) Let $\mathrm{C}_{1}=\mathcal{V}_{\mathrm{F}_{1}}$ and $\mathrm{C}_{2}=\mathcal{V}_{\mathrm{F}_{2}}$. Show that

$$
\operatorname{Cubics}\left(\mathrm{P}_{1}, \cdots, \mathrm{P}_{8}\right)=\left\{\mathcal{V}_{\lambda_{1} \mathrm{~F}_{1}+\lambda_{2} F_{2}}: \lambda_{i} \in K\right\} .
$$

(d) Show that

$$
\operatorname{Cubics}\left(\mathrm{P}_{1}, \cdots, \mathrm{P}_{8}\right)=\operatorname{Cubics}\left(\mathrm{P}_{1}, \cdots, \mathrm{P}_{9}\right) .
$$

3. Given elements $\alpha, \beta \in \mathbb{C}$, the (additive) subgroup they generate is:

$$
G_{\alpha, \beta}=\{m \alpha+n \beta: m, n \in \mathbb{Z}\}
$$

(a) Give an example where $G_{\alpha, \beta} \cong \mathbb{Z}$.
(b) Give an example where $G_{\alpha, \beta} \cong \mathbb{Z} \oplus \mathbb{Z}$, but $G_{\alpha, \beta}$ is not discrete.
4. Suppose $\Lambda \subset \mathbb{C}$ is a lattice, with ordered basis $\left\{\omega_{1}, \omega_{2}\right\}$. Let D be the (open) parallelogram $\left\{s \omega_{1}+t \omega_{2}: 0<s, t<1\right\}$, and let C be a simple, positive closed contour around the boundary of $\overline{\mathrm{D}}$. (For example, C is the piecewise-linear contour which visits, successively, $0, \omega_{1}, \omega_{1}+$ ω_{2}, ω_{2}, and back to 0 .)
Suppose that f is meromorphic, Λ-periodic, and has no poles along C. Show that $\int_{C} f(z) d z=$ 0.

REMARK This, combined with the residue theorem, can be used to show that a nonconstant Λ-periodic meromorphic function has at least two poles.

