Homework 2
 Due: Friday, February 6

You might not be able to do many of these until after class on Monday, February 2.

1. Consider the affine curve

$$
E_{0}: y^{2}=x^{3}+a x^{2}+b x+c .
$$

(a) Find an equation (i.e., homogeneous polynomial in X, Y and Z) for its projective closure, E.
(b) Find an equation for E in a neighborhood of $\mathcal{O}:=[0,1,0]$. (Hint: Dehomogenize on Y .)

Extra : Show that E is smooth at \mathcal{O}.
2. We work with the affine curve $C: y^{2}-x^{3}+x^{2}$ over Q and the points $P=(0,0)$ and $Q=(2,2)$. Set

$$
\begin{aligned}
A & =\frac{Q[x, y]}{y^{2}+x^{3}-x^{2}} \\
\mathfrak{m}_{P} & =(x, y) A \subset A \\
\mathfrak{m}_{Q} & =(x-2, y-2) A \subset A .
\end{aligned}
$$

(a) Graph $\mathrm{C}(\mathbb{R})$.
(b) What is $\operatorname{dim}_{\mathrm{Q}} \mathfrak{m}_{\mathrm{P}} / \mathfrak{m}_{\mathrm{P}}^{2}$?
(c) What is $\operatorname{dim}_{\mathrm{Q}} \mathfrak{m}_{\mathrm{Q}} / \mathfrak{m}_{\mathrm{Q}}^{2}$?
3. Let K be a perfect field and let \bar{K} be an algebraic closure of K. Suppose $P \in \mathbb{P}^{2}(\bar{K})$ is a point such that, for each $\sigma \in \operatorname{Gal}(\bar{K} / K), \mathrm{P}^{\sigma}=\mathrm{P}$. Show that $\mathrm{P} \in \mathbb{P}^{2}(\mathrm{~K})$. (Hint: Here are two different ways to do it: dehomogenize, and use a result about affine spaces; or use Hilbert's theorem 90.)
4. Let E be the elliptic curve with affine equation

$$
y^{2}=x^{3}+a x^{2}+b x+c .
$$

(a) Without using any formulas, describe

$$
\{\mathrm{P} \in \mathrm{E}(\overline{\mathrm{~K}}): 2 \mathrm{P}=\mathcal{O}\} .
$$

(Hint: 2P $=\mathcal{O}$ if and only if $\mathrm{P}=-\mathrm{P}$.)
(b) Let $P=\left(x_{0}, y_{0}\right) \in E(K), P \neq 0$. What is the equation for the tangent line to E at P ?
(c) Find an equation for $2 \mathrm{P}=\mathrm{P}+\mathrm{P}$. (Hint: Intersect the tangent line in (a) with E .)

