Homework 6 Due: Monday, April 2

1. The Riemann-Roch theorem, as stated in class, says the following:

Let C/k be a smooth projective curve. There exists an integer $g \ge 0$ and a divisor ω on C such that, for each $D \in \text{Div}(C)$,

$$\ell(D) = \deg(D) + 1 - g + \ell(\omega - D).$$

Recall also that a nonconstant rational function on C must have at least one pole, and thus

$$\mathcal{L}(0) = k$$

 $\ell(0) = \dim \mathcal{L}(0) = 1.$

Show the following consequences of Riemann-Roch:

- (a) $\ell(\omega) = g$.
- (b) $\deg(\omega) = 2g 2$.
- (c) If deg $D \ge 2g 1$, then $\ell(D) = \deg(D) g + 1$.
- 2. Let $(\infty) \in \mathbb{P}^1_k$ be the point at infinity, so that $\mathbb{P}^1_k = \mathbb{A}^1_k \cup \{(\infty)\}$. Recall that the function field of \mathbb{P}^1_k is $k(\mathbb{P}^1) \cong k(T)$.
 - (a) Suppose $n \ge 0$. Show that

$$\mathcal{L}(n \cdot (\infty)) = \{ f \in K[T] : \deg f \le n \}.$$

- (b) What is $\ell(n \cdot (\infty))$?
- (c) Use this and Riemann-Roch to show that the genus of \mathbb{P}^1 is zero.
- 3. Let C/k be a smooth projective curve, and suppose $P \in C$ is a point of degree one.
 - (a) Calculate $\ell(nP)$ for all *n*.
 - (b) Show there is no function $f \in k(C)$ with a pole of order one at *P* and no other poles.
 - (c) Let $\{1, x\}$ be a basis for $\mathcal{L}(2P)$. Why must $(x)_{\infty} = 2P$?
 - (d) Let $\{1, x, y\}$ be a basis for $\mathcal{L}(3P)$. Why must $(y)_{\infty} = 3P$?
 - (e) Find a basis for $\mathcal{L}(4P)$ in terms of products of 1, *x* and *y*. (HINT: If $f \in \mathcal{L}(D)$ and $g \in \mathcal{L}(E)$, then $fg \in \mathcal{L}(D+E)$; why?)
 - (f) Do the same for $\mathcal{L}(5P)$.
 - (g) What happens with $\mathcal{L}(6P)$?

Professor Jeff Achter Colorado State University Math 605B: Number theory Spring 2012 4. Let C/\mathbb{F}_q be a smooth projective curve. In class, we will define the zeta function of *C* (or its function field *K*) via

$$\zeta_K(s) = \sum_{n \ge 1} b_n q^{-ns}$$

or, using the variable $u = q^{-s}$,

$$Z_K(s) = \sum_{n \ge 1} b_n u^n$$

where

$$b_n = \#\{D \in \operatorname{Div}(C) : D \ge 0, \deg(D) = n\}.$$

If X/\mathbb{F}_q is any variety over \mathbb{F}_q , let $N_X(r) = \#X(\mathbb{F}_{q^r})$. One defines its zeta function by

$$\widetilde{Z}_X(u) = \exp(\sum_{r\geq 1} N_X(r) \frac{u^r}{r}).$$

Show that these definitions are the same, i.e., that

$$Z_{\mathcal{C}}(u) = \widetilde{Z}_{\mathcal{C}}(u)$$

- 5. Using which ever definition you prefer, show that: $Z_{\mathbb{P}^1/\mathbb{F}_q}(u) = \frac{1}{1-u}1 qu$.
- 6. What is the relation between $Z_{\mathbb{P}^1/\mathbb{F}_q}(u)$ and $Z_{\mathbb{A}^1/\mathbb{F}_q}(u)$? (Equivalently, what is the relation between $\zeta_{\mathbb{F}_q(T)}(s)$ and $\zeta_{\mathbb{F}_q[T]}(s)$?) Explain.