Homework 6

Due: Monday, April 2

1. The Riemann-Roch theorem, as stated in class, says the following:

Let C / k be a smooth projective curve. There exists an integer $g \geq 0$ and a divisor ω on C such that, for each $D \in \operatorname{Div}(C)$,

$$
\ell(D)=\operatorname{deg}(D)+1-g+\ell(\omega-D) .
$$

Recall also that a nonconstant rational function on C must have at least one pole, and thus

$$
\begin{aligned}
\mathcal{L}(0) & =k \\
\ell(0) & =\operatorname{dim} \mathcal{L}(0)=1 .
\end{aligned}
$$

Show the following consequences of Riemann-Roch:
(a) $\ell(\omega)=g$.
(b) $\operatorname{deg}(\omega)=2 g-2$.
(c) If $\operatorname{deg} D \geq 2 g-1$, then $\ell(D)=\operatorname{deg}(D)-g+1$.
2. Let $(\infty) \in \mathbb{P}_{k}^{1}$ be the point at infinity, so that $\mathbb{P}_{k}^{1}=\mathbb{A}_{k}^{1} \cup\{(\infty)\}$. Recall that the function field of \mathbb{P}_{k}^{1} is $k\left(\mathbb{P}^{1}\right) \cong k(T)$.
(a) Suppose $n \geq 0$. Show that

$$
\mathcal{L}(n \cdot(\infty))=\{f \in K[T]: \operatorname{deg} f \leq n\} .
$$

(b) What is $\ell(n \cdot(\infty))$?
(c) Use this and Riemann-Roch to show that the genus of \mathbb{P}^{1} is zero.
3. Let C / k be a smooth projective curve, and suppose $P \in C$ is a point of degree one.
(a) Calculate $\ell(n P)$ for all n.
(b) Show there is no function $f \in k(C)$ with a pole of order one at P and no other poles.
(c) Let $\{1, x\}$ be a basis for $\mathcal{L}(2 P)$. Why must $(x)_{\infty}=2 P$?
(d) Let $\{1, x, y\}$ be a basis for $\mathcal{L}(3 P)$. Why must $(y)_{\infty}=3 P$?
(e) Find a basis for $\mathcal{L}(4 P)$ in terms of products of $1, x$ and y. (Hint: If $f \in \mathcal{L}(D)$ and $g \in \mathcal{L}(E)$, then $f g \in \mathcal{L}(D+E)$; why? $)$
(f) Do the same for $\mathcal{L}(5 P)$.
(g) What happens with $\mathcal{L}(6 P)$?
4. Let C / \mathbb{F}_{q} be a smooth projective curve. In class, we will define the zeta function of C (or its function field K) via

$$
\zeta_{K}(s)=\sum_{n \geq 1} b_{n} q^{-n s}
$$

or, using the variable $u=q^{-s}$,

$$
Z_{K}(s)=\sum_{n \geq 1} b_{n} u^{n}
$$

where

$$
b_{n}=\#\{D \in \operatorname{Div}(C): D \geq 0, \operatorname{deg}(D)=n\} .
$$

If X / \mathbb{F}_{q} is any variety over \mathbb{F}_{q}, let $N_{X}(r)=\# X\left(\mathbb{F}_{q^{r}}\right)$. One defines its zeta function by

$$
\widetilde{Z}_{X}(u)=\exp \left(\sum_{r \geq 1} N_{X}(r) \frac{u^{r}}{r}\right) .
$$

Show that these definitions are the same, i.e., that

$$
Z_{C}(u)=\widetilde{Z}_{C}(u) .
$$

5. Using which ever definition you prefer, show that: $Z_{\mathbb{P}^{1} / \mathbb{F}_{q}}(u)=\frac{1}{1-u} 1-q u$.
6. What is the relation between $Z_{\mathbb{P}^{1} / \mathbb{F}_{q}}(u)$ and $Z_{\mathbb{A}^{1} / \mathbb{F}_{q}}(u)$? (Equivalently, what is the relation between $\zeta_{\mathbb{F}_{q}(T)}(s)$ and $\zeta_{\mathbb{F}_{q}[T]}(s)$?) Explain.
