Homework 5 Due: Friday, February 24

For simplicity, let k be an algebraically closed field in which 6 is invertible, such as $k = \mathbb{C}$.

- 1. Let $C = k[x, y] / (y^2 x^3 x)$. Let $\mathfrak{m} = (x, y)$.
 - (a) Show that m is maximal. (HINT: What can you say about the quotient ring A/m?)
 - (b) Show that $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = 1$.
- 2. Consider the ring $D = \mathbb{Z}[\sqrt{5}]$.
 - (a) Show that *D* is not integrally closed.
 - (b) Find a maximal ideal $\mathfrak{m} \subset D$ such that the localization $D_{\mathfrak{m}}$ is not a discrete valuation ring.

The polynomial

$$f(x,y) = y^2 - x^3$$

is irreducible, and thus the ring

$$A = \frac{k[x, y]}{f(x, y)}$$

is an integral domain, say with field of fractions K = Frac A.

- 3. Show that *A* is not integrally closed:
 - (a) Show that $\frac{y}{x} \in K$ is integral over *A*.
 - (b) Show that $\frac{y}{x} \notin A$.
- 4. Let $\mathfrak{m} \subseteq A$ be the ideal $\mathfrak{m} = (x, y)$.
 - (a) Show that m is maximal.
 - (b) Show that $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = 2$.
- 5. Let $B = A[\frac{y}{x}]$; we have $A \subset B \subset K$. Show that in fact $B = k[\frac{y}{x}]$.(HINT: In other words, think about the subring of Frac $\frac{k[x,y]}{(y^2-x^3-x)}$ generated by the element $\frac{y}{x}$. Show that it contains x and y, too.) In fact, $B \cong k[\frac{y}{x}]$, and the element $\frac{y}{x}$ is transcendental over k. Therefore, B is integrally closed, and in fact it is the integral closure of A.

Professor Jeff Achter Colorado State University Math 605B: Number theory Spring 2012