Homework 4

Due: Friday, February 17

1. Define a function δ on the set of (monic) polynomials in $\mathbb{F}_{q}[T]$:

$$
\delta(f(T))= \begin{cases}1 & f(T) \text { is squarefree } \\ 0 & \text { otherwise }\end{cases}
$$

and the associated Dirichlet series

$$
B(s)=\sum_{f(T)} \delta(f)\|f\|^{-s}
$$

(a) Is δ strongly multiplicative? Weakly multiplicative?
(b) Express $B(s)$ as an Euler product. In other words, find an explicit expression $B_{p}(s)$ so that

$$
B(s)=\prod_{P(T)} B_{p}(s) .
$$

(HINT: $B_{p}(s)$ is an easy polynomial in $\|P\|^{-s}$.)
2. (a) Show that

$$
B(s)=\frac{\zeta_{\mathbb{A}}(s)}{\zeta_{\mathbb{A}}(2 s)} .
$$

(HinT: $\frac{1-z^{2}}{1-z}=1+z$.)
(b) Give an explicit formula for b_{n}, the number of squarefree polynomials of degree n. (Hint: Note that $B(s)=\sum_{n \geq 0} b_{n} q^{-n s}$.)
3. Fix a polynomial $f(T) \in \mathbb{F}_{q}[T]$. Let

$$
\begin{aligned}
S_{f} & =\left\{g(T) \in \mathbb{F}_{q}[T]: g(T) \mid f(T)\right\} \\
A_{d} & =\left\{g(T) \in \mathbb{F}_{q}[T]: \operatorname{deg} g=d\right\} \\
S_{d, f} & =S_{f} \cap A_{d}
\end{aligned}
$$

Show that if $d \geq \operatorname{deg}(f)$, then

$$
\frac{\# S_{d, f}}{\# A_{d}}=\|f(T)\|^{-1} .
$$

4. (a) Let $P_{1}, \cdots, P_{t} \in \mathbb{F}_{q}[T]$ be distinct irreducible polynomials. Give a heuristic argument showing that the proportion of polynomials $f(T) \in \mathbb{F}_{q}[T]$ which are not divisible by any $P_{i}(T)^{2}$ is

$$
\prod_{i=1}^{t}\left(1-\left\|P_{i}(T)\right\|^{2}\right)^{-1}
$$

(b) Give a heuristic argument to show that the proportion of square-free polynomials in $\mathbb{F}_{q}[T]$ is $\zeta_{\mathbb{A}}(2)^{-1}$.

