Homework 3

Due: Friday, February 10

In class, we've been working with the symbol $\left(\frac{\cdot}{P(T)}\right)_{d}$ on $\mathbb{F}_{q}[T]$. This set asks you to consider some analogues for the Legendre symbol $(\dot{\bar{p}})$ on \mathbb{Z}.

1. It turns out that there are infinitely many primes which are congruent to 1 modulo 4.

Use this fact to write down an integer a such that a is not a square, but a is a square modulo p for infinitely many primes p.
There is a generalization of the Legendre symbol, called the Jacobi symbol. If $N=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, then the Jacobi symbol $\left(\frac{a}{N}\right)$ is an appropriate product of Legendre symbols:

$$
\left(\frac{a}{N}\right) \stackrel{\text { def }}{=}\left(\frac{a}{p_{1}}\right)^{e_{1}} \cdots\left(\frac{a}{p_{r}}\right)^{e_{r}} .
$$

(Alternatively, if you don't feel like grouping like powers, simply define $\left(\frac{a}{p_{1} \cdots p_{s}}\right)$ as $\left(\frac{a}{p_{1}}\right) \cdots\left(\frac{a}{p_{s}}\right)$, with the understanding that some of the p_{j} 's may be repeated.)
2. The Jacobi symbol $\left(\frac{a}{N}\right)$ doesn't exactly measure whether a is a square modulo N.
(a) If $\left(\frac{a}{N}\right)=-1$, does it follow that a is not a square modulo N ? Prove or give a counterexample.
(b) If $\left(\frac{a}{N}\right)=1$, does it follow that a is a square modulo N ? Prove or give a counterexample.
3. (a) Show that $\left(\frac{a b}{N}\right)=\left(\frac{a}{N}\right)\left(\frac{b}{N}\right)$ and $\left(\frac{a}{M N}\right)=\left(\frac{a}{M}\right)\left(\frac{a}{N}\right)$.
(b) Suppose N is odd. Show that $\left(\frac{-1}{N}\right)=1$ if and only if $N \equiv 1 \bmod 4$.

In fact, one can show that for odd M and N,

$$
\left(\frac{M}{N}\right)=\left\{\begin{array}{ll}
\left(\frac{N}{M}\right) & \text { if } M \equiv 1 \bmod 4 \text { or } N \equiv 1 \bmod 4 \\
-\left(\frac{N}{M}\right) & \text { if } M \equiv N \equiv 3 \bmod 4
\end{array} .\right.
$$

and

$$
\left(\frac{2}{N}\right)=1 \text { if and only if } N \equiv \pm 1 \bmod 8
$$

4. Suppose m is an odd natural number such that, for all but finitely many primes p, m is a square modulo p. Show that m is itself a perfect square.
