Homework 2

Due: Friday, February 3

1. Fix an odd prime p, and let $\zeta=\exp (2 \pi i / p)$. For $a \not \equiv 0 \bmod p$, define

$$
\sum_{x \in \mathbb{F}_{p}} \zeta^{a x^{2}}
$$

Prove the following assertions:
(a) $\tau(a)=\left(\frac{a}{p}\right) \tau(1)$
(b) $|\tau(a)|^{2}=p$
(c) $\tau(1)^{2}=\left(\frac{-1}{p}\right) p$.
2. For an odd prime p an $a \in \mathbb{Z}$, let

$$
N(a, p)=\#\left\{(x, y, z) \in \mathbb{F}_{p}^{3}: x^{2}+y^{2}+z^{2} \equiv a \bmod p\right\}
$$

Find a formula for $N(a, p)$.
3. Find an example of the following situation: A finite field \mathbb{F}_{q}, a number $d \geq 2$ such that $d \mid(q-1)$, and polynomials $a(T), P(T)$ and $Q(T)$ in $\mathbb{F}_{q}[T]$ such that: P and Q are monic and irreducible; $\operatorname{deg} P=\operatorname{deg} Q ; P Q \nmid a ; a(T)$ is a $d^{\text {th }}$ power $\bmod P(T)$; and $a(T)$ is not $d^{\text {th }}$ power $\bmod Q(T)$.
4. Let $P(T) \in \mathbb{F}_{q}[T]$ be irreducible. Give a criterion, in terms of q and $\operatorname{deg} P$, for

$$
X^{2}+1 \equiv 0 \bmod P(T)
$$

to have a solution.
5. Suppose $d \mid(q-1)$ and $P(T) \in \mathbb{F}_{q}[T]$ is irreducible. SHow that the number of solutions to the congruence

$$
X^{d} \equiv a \bmod P(T)
$$

is

$$
1+\left(\frac{a}{p}\right)_{d}+\left(\frac{a}{p}\right)_{d}^{2}+\cdots+\left(\frac{a}{p}\right)_{d}^{d-1}
$$

