Homework 2 Due: Friday, February 3

1. Fix an odd prime *p*, and let $\zeta = \exp(2\pi i/p)$. For $a \neq 0 \mod p$, define

$$\sum_{x\in\mathbb{F}_p}\zeta^{ax^2}$$

Prove the following assertions:

- (a) $\tau(a) = \left(\frac{a}{p}\right)\tau(1)$ (b) $|\tau(a)|^2 = p$ (c) $\tau(1)^2 = \left(\frac{-1}{p}\right)p.$
- 2. For an odd prime *p* an $a \in \mathbb{Z}$, let

$$N(a, p) = \#\{(x, y, z) \in \mathbb{F}_p^3 : x^2 + y^2 + z^2 \equiv a \mod p\}.$$

Find a formula for N(a, p).

- 3. Find an example of the following situation: A finite field \mathbb{F}_q , a number $d \ge 2$ such that d|(q-1), and polynomials a(T), P(T) and Q(T) in $\mathbb{F}_q[T]$ such that: P and Q are monic and irreducible; deg $P = \deg Q$; $PQ \nmid a$; a(T) is a d^{th} power mod P(T); and a(T) is not d^{th} power mod Q(T).
- 4. Let $P(T) \in \mathbb{F}_q[T]$ be irreducible. Give a criterion, in terms of *q* and deg *P*, for

$$X^2 + 1 \equiv 0 \bmod P(T)$$

to have a solution.

5. Suppose d|(q-1) and $P(T) \in \mathbb{F}_q[T]$ is irreducible. Show that the number of solutions to the congruence

$$X^d \equiv a \bmod P(T)$$

is

$$1 + \left(\frac{a}{P}\right)_d + \left(\frac{a}{P}\right)_d^2 + \dots + \left(\frac{a}{P}\right)_d^{d-1}.$$

Professor Jeff Achter Colorado State University Math 605B: Number theory Spring 2012