Homework 1

Due: Friday, January 27

1. Don Zagier ${ }^{1}$ has given the following argument to show that every prime $p \equiv 1 \bmod 4$ is a sum of two squares:
"The involution on the finite set $S=\left\{(x, y, z) \in \mathbb{N}^{3}: x^{2}+4 y z=p\right\}$ defined by

$$
(x, y, z) \mapsto \begin{cases}(x+2 z, z, y-x-z) & \text { if } x<y-z \\ (2 y-x, y, x-y+z) & \text { if } y-z<x<2 y \\ (x-2 y, x-y+z, y) & \text { if } x>2 y\end{cases}
$$

has exactly one fixed point, so $|S|$ is odd and the involution defined by $(x, y, z) \mapsto$ (x, z, y) also has a fixed point."

Supply the necessary details to turn this into a readable proof. If you like, you may proceed as follows. Let ι be the involution Zagier defines.
(a) Show that ι really is an involution. (Hint: Let $A=\{(x, y, z) \in S: x<y-z\}$, and defined B and C similarly. Start by showing that $\iota(A) \subseteq C, \iota(C) \subseteq A$, and $\iota(B) \subseteq B$.)
(b) Find all fixed points of ι. (Hint: Suppose $p=4 k+1$. Consider $(1,1, k)$.)
(c) Conclude that p is a sum of squares.
2. Let p be an odd prime. Show that

$$
\left(\frac{-1}{p}\right)= \begin{cases}1 & p \equiv 1 \bmod 4 \\ 3 & p \equiv 3 \bmod 4\end{cases}
$$

in two different ways:
(a) Using the previous problem.
(b) Using the fact that \mathbb{F}_{p}^{\times}is cyclic.
3. Let p be an odd prime, and suppose $a \not \equiv 0 \bmod p$. Prove Euler's criterion:

$$
a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right) \bmod p
$$

The statement is of course true if $a \equiv 0 \bmod p$, too. If you like, you may proceed as follows.
(a) Show that $a^{\frac{p-1}{2}} \equiv \pm 1 \bmod p$.
(b) Write down $\frac{p-1}{2}$ values of a such that $a^{\frac{p-1}{2}} \equiv 1 \equiv\left(\frac{a}{p}\right)$.
(c) Why is this list complete?

[^0]
[^0]: ${ }^{1}$ D. Zagier, "A one-sentence proof that every prime $p \equiv 1 \bmod 4$ is a sum of two squares", American Mathematical Monthly, vol. 97, no. 2, Feb 1990, p. 144

 Professor Jeff Achter
 Colorado State University

