9 Zeta function of a variety

Let *X* be a variety over \mathbb{F}_q , i.e., a reduced scheme of finite type.

For an extension field \mathbb{F}_{q^m} ,

$$X(\mathbb{F}_{q^m}) = X(\operatorname{Spec} \mathbb{F}_{q^m}) = \operatorname{Mor}_{\mathbb{F}_q}(\operatorname{Spec} \mathbb{F}_{q^m}, X)$$

is the set of \mathbb{F}_q -valued points of *X*.

For each natural number m, set

$$N_m(X) = \#X(\mathbb{F}_{q^m}).$$

Remark $N_m(X)$ is finite. Indeed, *X* is a finite union of open affine schemes, so it suffices to show this for *X* affine. Since *X* = Spec *A* with *A* finitely generated, $A \cong \mathbb{F}_q[T_1, \dots, T_n]/I$ for some ideal. So $X(\mathbb{F}_{q^m}) \subseteq \mathbb{A}^n(\mathbb{F}_{q^m})$; but the latter set is clearly finite.

Question 9.1. *Fix a base field* \mathbb{F}_q *.*

- a. Calculate $N_m(\mathbb{A}^n_{\mathbb{F}_a})$.
- b. Calculate $N_m(\mathbb{P}^n_{\mathbb{F}_a})$.

Let X_{cl} be the set of closed points of X (as a scheme).

Question 9.2. Let $X = \text{Spec } \mathbb{F}_{q^r}$, thought of as a scheme over \mathbb{F}_q . What is $\#X(\mathbb{F}_{q^m})$? (HINT: The answer depends on whether r|m.)

If $P \in X_{cl}$, the residue field at *P* is $\kappa(P)$; the degree of *P* is deg $(P) = [\kappa(P) : \mathbb{F}_q]$. Let

$$X_{cl}^{(d)} = \{ P \in X_{cl} : \deg(P) = d \}.$$

Question 9.3. *Give a formula for* $N_m(X)$ *in terms of* $\#X_{cl}^{(d)}$. (HINT: Typically, several different *d* show up for a given *m*.)

The Hasse-Weil zeta function of X/\mathbb{F}_q is

$$Z(X/\mathbb{F}_q,T) = \exp\left(\sum_{m\geq 1} \frac{N_m(X)}{m}T^m\right) \in \mathbb{Q}[\![T]\!].$$

Question 9.4. Suppose X and Y are disjoint varieties over \mathbb{F}_q . Show that

$$Z(X \cup Y/\mathbb{F}_q, T) = Z(X/\mathbb{F}_q, T) \cdot Z(Y/\mathbb{F}_q, T).$$

Professor Jeff Achter Colorado State University 45

Math 605: Arithmetic Geometry Spring 2017 **Question 9.5.** *a. Compute* $Z(\mathbb{A}^n/\mathbb{F}_q, T)$ *.*

b. Compute $Z(\mathbb{P}^n/\mathbb{F}_q, T)$.

Question 9.6. Show that

$$Z(X/\mathbb{F}_q,T) = \prod_{P \in X_{\rm cl}} (1 - T^{\deg(P)})^{-1}.$$

(HINT: It's a little easier to analyze $\log Z(X/\mathbb{F}_q, T)$.)