Name: \qquad

1	2	3	4	total

Midterm

Each problem is worth twelve points, evenly divided among subproblems. No notes or books allowed.

1. Consider the following three recursions:

$$
\begin{aligned}
& A(n, k)=A(n-1, k-1)+k A(n-1, k-1) \\
& B(n, k)=B(n, k-1)+B(n-1, k) \\
& C(n, k)=C(n-1, k-1)+C(n-1, k)
\end{aligned}
$$

and the following three counting functions:
$\binom{n}{k}$ subsets of $[n]$ of size k.
$M(n, k)$ multisets of $[n]$ of size k;
$S(n, k)$ partitions of $[n]$ into k nonempty blocks.
Which recurrence is satisfied by which function? Justify.
2. (a) Show that the number of different mountain ranges you can draw with n upstrokes and n downstrokes is given by the Catalan number C_{n+1} :

(b) A clown stands at the edge of a swimming pool with a bowl with n red and n blue balls. He randomly draws balls from it. If he draws a red ball he takes a step back. If he draws a blue ball he takes a step forward. Assuming that the steps are always the same length, what is the probability that the clown stays dry?
3. Give a combinatorial argument to show that

$$
\sum_{j=1}^{n} j^{2}=\binom{n+1}{2}+2\binom{n+1}{3}
$$

(Hint: Consider the set $\mathcal{S}=\{(i, j, k): 0 \leq i, j<k \leq n\}$.)
4. Use generating functions to show that

$$
\sum_{j=1}^{n} j^{2}=M(4, n-1)+M(4, n-2) .
$$

