
Worksheets

Here are two sets of problems, to be done during April 15–April 29 (approximately).

The first set of problems isn’t like anything we’ve done before, but should feel familiar; they
involve working with the complex numbers as a two-dimensional vector space over R.

The second set of problems is a special case of the investigation of algebraic numbers we did in class.
It’s a little more abstract, but more closely parallels what we did in class.

There are connections and correspondences between the two sets, and you’re welcome to do them
in whatever order you like.

At the end of this you’ll find lecture notes on algebraic numbers and linear algebra.

Please don’t hesitate to email if you have any questions.

Professor Jeff Achter
Colorado State University

M469 Linear Algebra II
Spring 2009



In these problems, think of C as a 2-dimensional vector space over R, with basis {1, i}.

If β ∈ C, write β = a + bi, with a, b ∈ R. (Note that these are the coordinates of β with respect to
our choice of basis!)

The complex conjugate of β is β = a − bi. Let κ : C → C be the complex conjugation map
κ(β) = β. This is a R-linear transformation of C; κ ∈ L(C).

Recall that |β|2 = ββ.

If you get stuck on these problems, try working them out in the explicit cases β = 2, β = 3 + 4i.

1. (a) Compute the matrix [κ].

(b) Describe two subspaces U, V ⊂ C such that

i. U and V are one-dimensional subspaces;
ii. U and V are κ-invariant;

iii. U ∩V = {0}.

(Then C = U ⊕V.)

2. Let β = a + bi ∈ C. Then multiplication by β gives a linear transformation Tβ ∈ L(C).

(a) Compute the matrix [β] = [Tβ].

(b) What is det(Tβ)? Equivalently, what is det([β])?

(c) Express det(Tβ) in terms of β and β.

(d) Express det(Tβ) in terms of |β|.

3. The trace of a matrix is the sum of its diagonal entries (see [KK] p. 87).

In the situation of Problem 2, express the trace tr[Tβ] in terms of β and β.

4. Continue the notation of Problem 2.

(a) Compute the characteristic polynomial χTβ
(x).

(b) Express χTβ
(x) in terms of its trace and determinant.

(c) Express χTβ
(x) in terms of β and β.

5. (a) Show that χTβ
(β) = 0.

(b) Suppose β ∈ R ⊂ C. Show that χTβ
(x) factors (as a polynomial over R).

(c) Suppose β 6∈ R. Show that χTβ
is irreducible, i.e., that χTβ

does not factor (as a polyno-
mial over R).
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Fix an integer D which is not a square. It turns out that the condition there is no a ∈ Z such
that a2 = D is the same as the condition “there is no a ∈ Q such that a2 = D.” In this set of
exercises, you are welcome to fix a value of D (say, D = 3) and work with it, although this won’t
be appreciably easier.

1. Show that the minimal polynomial of
√

D is µ(x) = µ√D(x) = x2 − D.

Therefore, Q[
√

D] is a degree two extension of Q, with basis {1,
√

D}.

2. An element β of Q[
√

D] can be written as β = a + b
√

D for some a, b ∈ Q.

(a) The numbers a and b are uniquely determined. Why? (You don’t have to prove any-
thing here, just understand which result from class proves this.)

(b) Suppose β = a + b
√

D and γ = c + d
√

D.

i. What is β + γ?
ii. What is β ·γ?

In each case, express your answer in the form e + f
√

D, e, f ∈ Q.

Unless otherwise specified, think of Q[
√

D] as a two-dimensional vector space over Q. In
particular, L(Q[

√
D]) means LQ(Q[

√
D], Q[

√
D]), so that an element of L(Q[

√
D]) is repre-

sented by an element of Mat2(Q).

3. There is a map

Q[
√

D]
σ
- Q[

√
D]

a + b
√

D - a− b
√

D

(a) Show that σ is a linear transformation.

(b) Write down the matrix [σ ].

4. If β ∈ Q[
√

D], its trace is tr(β) = β +σ(β) and its norm is N (β) = β ·σ(β).

(a) Suppose β = a + b
√

D. Write down formulas for:

i. tr(β)
ii. N (β)

(b) Is β 7→ tr(β) a linear transformation? If so, write down its matrix; if not, explain.

(c) Is β 7→ N (β) a linear transformation? If so, write down its matrix; if not, explain.

5. Let β = a + b
√

D ∈ Q[
√

D]. Then multiplication by β gives a linear transformation Tβ ∈
L(Q[

√
D]). To ease notation, write [β] for [Tβ].

(a) Suppose β = a ∈ Q ⊂ Q[
√

D]. Compute the matrix [a].
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(b) Compute the matrix [
√

D].

(c) Suppose β = a + b
√

D. Compute [β].

6. (a) Compute tr([β]) and det([β]). (The trace of a matrix is the sum of its diagonal entries.)

(b) How are these related to tr(β) and N (β)?

7. In this problem, we’ll show that the ring Q[
√

D] is actually a field, by using linear algebra to
show that every nonzero element has a multiplicative inverse.

(a) Show thatN (β) = 0 if and only if β = 0. (HINT: Remember, D is not a square – so, a2

b2 = D
has no solutions with a, b ∈ Q.)

(b) Suppose β 6= 0. Show that Tβ is invertible, i.e., that the matrix [β] has an inverse.

(c) Suppose β 6= 0. Show there exists γ ∈ Q[
√

D] such that [γ] · [β] =
(

1 0
0 1

)
.

(d) For β and γ as above, show that γ ·β = 1.

8. (a) Compute the characteristic polynomial χTβ
(x).

(b) What is χTβ
(β)?

9. For this problem – and this problem only! – view [β] as a matrix with coefficients in C. What
are the eigenvalues of [β]?
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1 INTERLUDE: NUMBER THEORY

1 Interlude: number theory

1.1 Rings of algebraic numbers

A number α ∈ C is called algebraic (over Q) if it satisfies f (α) = 0 for some polynomial f (x) ∈
Q[x].

Example 3
√

2 is algebraic, since it’s a root of the polynomial x3 − 2 = 0.

If α is algebraic, let µα(x) ∈ Q[x] be the smallest nonconstant monic polynomial such that µα(α) =
0. The degree of α is deg(α) = deg µα(x).

Example The minimal polynomial of i =
√
−1 is x2 + 1. This is easy to verify; clearly, i doesn’t

satisfy a linear equation, and this is a quadratic polynomial it satisfies.

Example The minimal polynomial of 3
√

2 is x3 − 2. It’s clear that 3
√

2 is a solution to x3 − 2 = 0.
Grant the next lemma; then the minimal polynomial µ 3√2α(x) divides x3 − 2, and it suffices to
show that there’s no factorization x3 − 2 = (x− a)(x2 + bx + c) with a, b, c ∈ Q. Suppose there is
such a solution; then

(x− a)(x2 + bx + c) = x3 − 2

x3 + (b− a)x2 + (−ab + c)x− ac = x3 − 2

So equate coefficients. We have the system of (nonlinear, for once!) equations

b− a = 0
−ab + c = 0

−ac = −2

By the first equation, a = b; by the second, c = ab = a2; and by the third, ac = a3 = 2, which is
impossible if a ∈ Q.

Remember that we write f (x)|g(x) if f (x) divides g(x) (evenly), i.e., if there exists some polyno-
mial h(x) such that f (x)h(x) = g(x).

Lemma Suppose α is algebraic. Suppose f (x) ∈ Q[x]. Then f (α) = 0 ⇐⇒ µα(x)| f (x).

Proof The proof is much like before. One direction is trivial. Conversely, suppose f (α) = 0.
Using long division with remainder for polynomials, write

f (x) = q(x)µα(x) + r(x)

where deg r(x) < deg µα(x). Now, f (α) = 0, so q(α)µα(α) + r(α) = 0, so r(α) = 0. By minimal-
ity, this forces r = 0.

Example Suppose f (x) ∈ Q[x]. Then f ( 3
√

2) = 0 ⇐⇒ x3 − 2| f (x).
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1 INTERLUDE: NUMBER THEORY 1.1 Rings of algebraic numbers

Let Q[α] be the smallest ring which contains both Q and α. Note that Q[α] must contain things
like α2, as well, and thus things like a + bα + cα2, etc.

Lemma Q[α] is a vector space over Q.

Proof Just forget about the fact that we can multiply elements of Q[α] by each other, and instead
just multiply by elements of the base field, Q.

Remark This is quite similar to the way in which C is a vector space over R, say with basis {1, i}.

Proposition Let m = degα; then Q[α] is a vector space over Q of dimension m.

Example Q[ 3
√

2] = {b0 + b1
3
√

2 + b2
3
√

4}. For instance, suppose β = 2 + 5 3
√

4 and γ = 1 + 2 3
√

2 +
3 3
√

4. Then

βγ = (2 + 5 3
√

4)(1 + 2 3
√

2 + 3 3
√

4)

= 2(1 + 2 3
√

2 + 3 3
√

4) + 5 3
√

4(1 + 2 3
√

2 + 3 3
√

4)

= 2 + 4 3
√

2 + 6 3
√

4 + 5 3
√

4 + 10 3
√

4 3
√

2 + 15 3
√

4 3
√

4

= 2 + 4 3
√

2 + 6 3
√

4 + 5 3
√

4 + 10 3
√

8 + 15 3
√

16

= 2 + 4 3
√

2 + 6 3
√

4 + 5 3
√

4 + 20 + 30 3
√

2

= 22 + 34 3
√

2 + 11 3
√

4.

Proof We’ll prove the proposition in a few steps; briefly, we’ll show that

Q[α] = Rα := {b0 + b1α + · · ·+ bm−1α
m−1},

and that {1,α, · · · ,αm−1} is a basis for Rα as a vector space over Q.

Lemma For all n ∈ Z≥0, αn ∈ Rα.

Proof The proof is by induction on n. Let µ(x) = xm + ∑m−1
i=0 aixi be the minimal polynomial of

α.

The claim is certainly true for 0 ≤ n ≤ m− 1. For n = m, since µ(α) = 0, we have

µ(α) = αm +
m−1

∑
i=0

aiα
i = 0

αm = −
m−1

∑
i=0

aiα
i

Now suppose the claim is true for n− 1; we wish to show that αn can be expressed as a Q-linear
combination of 1,α, · · · ,αm−1. By the inductive hypothesis, there are numbers b0, · · · , bm−1 ∈ Q
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1 INTERLUDE: NUMBER THEORY 1.2 Back to linear algebra

such that αn−1 = ∑m−1
i=0 biα

i. Then

αn = ααn−1

= α · (
m−1

∑
i=0

biα
i)

=
m−1

∑
i=0

biα
i+1

= (
m−1

∑
i=1

bi−1α
i)− bm−1α

m

= (
m−1

∑
i=1

bi−1α
i)−

m−1

∑
i=0

bm−1aiα
i

∈ span(1,α, · · · ,αm−1).

Lemma Rα = Q[α] is a ring.

Proof It’s clear that Rα is closed under addition. To show that it is closed under multiplication,
choose two elements β = ∑ biα

i and γ = ∑ c jα
j. Then

βγ = (∑ biα
i)(∑ ciα

j)

= ∑
i

∑
j

bic jα
i+ j

(One can be more clever about organizing this information, but it’s not necessary.) Since each
αi+ j ∈ Rα, so is bic jα

i+ j, and thus so is βγ.

Proof of proposition So, at this point we know that Rα = Q[α]; and for tautological reasons,
we know that {1,α, · · · ,αm−1} spans Q[α] as a Q-vector space. So we need to show that this set
is linearly independent.

Suppose that ∑ biα
i = 0; then α is a root of the polynomial f (x) = ∑ bixi, whose degree is less

than m; by definition, f (x) is the zero polynomial, and thus each bi = 0.

1.2 Back to linear algebra

Consider Q[α] as a vector space over Q, with basis {1,α, · · · ,αm−1}.

Lemma If β ∈ Q[α], then multiplication by β is a linear transformation of Q[α].

Proof Omitted.

Call this linear transformation Tβ, I suppose, and let [β] = [Tβ] with respect to this basis.

Example In Q[ 3
√

2], try multiplication by 5, by 3
√

2, and by some random element:
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1 INTERLUDE: NUMBER THEORY 1.2 Back to linear algebra

• Use β = 5. Then

T5(1) = 5 · 1 = 5 · 1 + 0 · 3
√

2 + 0 · 3
√

4

T5(
3
√

2) = 5 3
√

2 = 0 · 1 + 5 · 3
√

2 + 0 · 3
√

4

T5(
3
√

4) = 5 3
√

4 = 0 · 1 + 0 · 3
√

2 + 1 · 3
√

4

[T5] = [5] =

5 0 0
0 5 0
0 0 5

 .

• Use β = 3
√

2. Then

T 3√2(1) = 3
√

2 · 1 = 3
√

2

= 0 · 1 + 1 · 3
√

2 + 0 · 3
√

4

T 3√2(
3
√

2) = 3
√

2 3
√

2 = 3
√

4

= 0 · 1 + 0 · 3
√

2 + 1 · 3
√

4

T 3√2(
3
√

4) = 3
√

8 = 2

= 2 · 1 + 0 · 3
√

2 + 0 · 3
√

4

[T 3√2] =

0 0 2
1 0 0
0 1 0


• Use β = 1 + 3

√
2 + 3

√
4. Then

Tβ(1) = 1 + 3
√

2 + 3
√

4

Tβ( 3
√

2) = (1 + 3
√

2 + 3
√

4) 3
√

2

= 2 + 3
√

2 + 3
√

4

Tβ( 3
√

4) = (1 + 3
√

2 + 3
√

4) 3
√

4

= 2 + 2 3
√

2 + 3
√

4

[β] =

1 2 2
1 1 2
1 1 1


Lemma

a. If β ∈ Q, then [β] is diagonal.

b. [α] is the companion matrix of µα(x), the minimal polynomial of x.

c. µβ(x)|χTβ
(x).

Proof
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