Homework 9
 Due: Wednesday, April 8

Throughout, let V be a finite-dimensional vector space over a field \mathbb{F}, and suppose $T \in \mathcal{L}(V)$.

1. Let \mathcal{E} be the standard basis on \mathbb{R}^{3}. Let $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ be the operator whose matrix, in the standard basis, is

$$
[T]_{\mathcal{E}}=\left(\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right)
$$

Verify that the minimal polynomial of T is $(x-1)(x-2)$.
2. Let \mathcal{E} be the standard basis on \mathbb{R}^{3}. Let $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ be the operator with matrix

$$
[T]_{\mathcal{E}}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & -1 \\
0 & 0 & 3
\end{array}\right)
$$

Find the minimal polynomials for the action of T on each of the following vectors:
(a) $u=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
(b) $v=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$
(c) $w=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
3. Suppose $v, w \in V$ and $z \in \operatorname{span}(v, w)$.
(a) Show that $\mu_{T, z}(x)$ divides

$$
\mu_{T, v}(x) \cdot \mu_{T, w}(x) .
$$

(b) Prove a little more: $\mu_{T, z}(x)$ divides $\operatorname{lcm}\left(\mu_{T, v}(x), \mu_{T, w}(x)\right)$.
4. In the situation of problem 3 , suppose that $\mu_{T, v}(x)$ and $\mu_{T, w}(x)$ are relatively prime, and that $z=a v+b w$ with $a, b \neq 0$.
(a) Show that $\mu_{T, z}(x)=\mu_{T, v}(x) \cdot \mu_{T, w}(x)$. (Hint: If $P(x), Q(x) \in \mathbb{F}[x]$, then P and Q are relatively prime $\Longleftrightarrow \operatorname{lcm}(P(x), Q(x))=P(x) \cdot Q(x)$.)
(b) Show that $\operatorname{dim} \operatorname{span}(T, z)=\operatorname{dim} \operatorname{span}(T, v)+\operatorname{dim} \operatorname{span}(T, w)$. (Hint: For a vector $u \in$ V, how can you tell dim $\operatorname{span}(T, u)$ by looking at $\mu_{T, u}(x)$?)

