Homework 9 Due: Wednesday, April 8

Throughout, let V be a finite-dimensional vector space over a field \mathbb{F} *, and suppose* $T \in \mathcal{L}(V)$ *.*

1. Let \mathcal{E} be the standard basis on \mathbb{R}^3 . Let $T \in \mathcal{L}(\mathbb{R}^3)$ be the operator whose matrix, in the standard basis, is

$$[T]_{\mathcal{E}} = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

Verify that the minimal polynomial of *T* is (x - 1)(x - 2).

2. Let \mathcal{E} be the standard basis on \mathbb{R}^3 . Let $T \in \mathcal{L}(\mathbb{R}^3)$ be the operator with matrix

$$[T]_{\mathcal{E}} = \begin{pmatrix} 2 & 1 & 1\\ 1 & 2 & -1\\ 0 & 0 & 3 \end{pmatrix}$$

Find the minimal polynomials for the action of *T* on each of the following vectors:

(a)
$$u = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

(b) $v = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$
(c) $w = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$.

3. Suppose $v, w \in V$ and $z \in \text{span}(v, w)$.

(a) Show that $\mu_{T,z}(x)$ divides

$$\mu_{T,v}(x)\cdot\mu_{T,w}(x).$$

- (b) Prove a little more: $\mu_{T,z}(x)$ divides $lcm(\mu_{T,v}(x), \mu_{T,w}(x))$.
- 4. In the situation of problem 3, suppose that $\mu_{T,v}(x)$ and $\mu_{T,w}(x)$ are relatively prime, and that z = av + bw with $a, b \neq 0$.
 - (a) Show that $\mu_{T,z}(x) = \mu_{T,v}(x) \cdot \mu_{T,w}(x)$. (HINT: If $P(x), Q(x) \in \mathbb{F}[x]$, then P and Q are relatively prime $\iff \operatorname{lcm}(P(x), Q(x)) = P(x) \cdot Q(x)$.)
 - (b) Show that dim span(T, z) = dim span(T, v) + dim span(T, w). (HINT: For a vector $u \in V$, how can you tell dim span(T, u) by looking at $\mu_{T,u}(x)$?)

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009