Homework 8
Due: Wednesday, April 1

As always, V is a vector space over a field \mathbb{F}.

1. Suppose $T \in \mathcal{L}(V)$ and $v_{1}, \cdots, v_{r} \in V$. Suppose that for each $1 \leq i \leq r, T\left(v_{i}\right) \in \operatorname{span}\left(v_{1}, \cdots, v_{r}\right)$. Show that $\operatorname{span}\left(v_{1}, \cdots, v_{r}\right)$ is T-invariant. The converse is very easy to show.
2. Suppose $T \in \mathcal{L}(V)$.
(a) Show $\operatorname{ker}(T)$ is T-invariant.
(b) Show $\operatorname{im}(T)$ is T-invariant.
3. Suppose $\operatorname{dim} V=n$ and $T \in \mathcal{L}(V)$. Use the result of [KK] ex. 5.1.2 to show that T has at most n distinct eigenvalues. Do not use the characteristic polynomial!
4. Suppose $\operatorname{dim} V=n$ and $T \in \mathcal{L}(V)$ has distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$.
(a) Explain (briefly) why the characteristic polynomial of T is

$$
\chi_{T}(X)=\left(X-\lambda_{1}\right)\left(X-\lambda_{2}\right) \cdots\left(X-\lambda_{n}\right) .
$$

(b) Suppose v_{i} is an eigenvector for λ_{i}. Show that

$$
\chi_{T}(T)\left(v_{i}\right)=0 .
$$

(c) Show that $\chi_{T}(T)=0$, i.e., that for any $v \in V, \chi_{T}(T)(v)=0$.

Compare also [KK] ex. 5.1.3.

