Homework 7 Due: Wednesday, March 11

As always, *V* is a vector space over the field \mathbb{F} .

1. Let ψ be a bilinear form on V.¹ Define two new functions on $V \times V$ by

$$\psi_s(v_1, v_2) = rac{1}{2}(\psi(v_1, v_2) + \psi(v_2, v_1)) \ \psi_a(v_1, v_2) = rac{1}{2}(\psi(v_1, v_2) - \psi(v_2, v_1)).$$

- (a) Show that ψ_s is a symmetric bilinear form on *V*.
- (b) Show that ψ_a is an alternating bilinear form on *V*.
- (c) Show that $\psi = \psi_s + \psi_a$, i.e., that for any $v_1, v_2 \in V$,

$$\psi(v_1, v_2) = \psi_s(v_1, v_2) + \psi_a(v_1, v_2).$$

- 2. Recall that S_3 is the group of permutations on $\{1, 2, 3\}$. For each of the six elements $\sigma \in S_3$, compute sgn(σ) in two different ways:
 - (a) Express σ as a product of *t* transpositions, and compute $(-1)^t$;
 - (b) Compute $|\sigma|$, the number of orbits of the action of σ on $\{1, 2, 3\}$, and compute $(-1)^{3-|\sigma|}$.
- 3. Suppose ϕ is an alternating trilinear form on *V*. Suppose $v_1, v_2, v_3 \in V$ and $a_{ij} \in \mathbb{F}$ for $1 \leq i, j \leq 3$.

Explicitly compute

$$\phi(\sum_{i=1}^3 a_{i1}v_i, \sum_{i=1}^3 a_{i2}v_i, \sum_{i=1}^3 a_{i3}v_i).$$

4. Suppose dim V = n, and $\{v_1, \dots, v_n\}$ is a basis. In class, we defined a nontrivial *n*-linear alternating form *D* in the following way: If $u_1, \dots, u_n \in V$ with

$$u_j = \sum_{i=1}^n a_{ij} v_i,$$

then

$$D(u_1,\cdots,u_n) = \sum_{\sigma\in S_n} \operatorname{sgn}(\sigma) \prod_{j=1}^n a_{\sigma(j),j}.$$

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009

¹Also, suppose the characteristic of k is not two.

Define vectors u'_1, \cdots, u'_n by

$$u_i' = \sum_{j=1}^n a_{ij} v_j.$$

(If you prefer, think of $u'_j = \sum_{i=1}^n b_{ij}v_i$, where $b_{ij} = a_{ji}$.) Show that

$$D(u'_1,\cdots,u'_n)=D(u_1,\cdots,u_n).$$

This shows that if $A \in Mat_n(\mathbb{F})$ *is a matrix with transpose* A^{tr} *, then* $det(A) = det(A^{tr})$ *.*

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009