Homework 7
Due: Wednesday, March 11
As always, V is a vector space over the field \mathbb{F}.

1. Let ψ be a bilinear form on $V .{ }^{1}$ Define two new functions on $V \times V$ by

$$
\begin{aligned}
& \psi_{s}\left(v_{1}, v_{2}\right)=\frac{1}{2}\left(\psi\left(v_{1}, v_{2}\right)+\psi\left(v_{2}, v_{1}\right)\right) \\
& \psi_{a}\left(v_{1}, v_{2}\right)=\frac{1}{2}\left(\psi\left(v_{1}, v_{2}\right)-\psi\left(v_{2}, v_{1}\right)\right)
\end{aligned}
$$

(a) Show that ψ_{s} is a symmetric bilinear form on V.
(b) Show that ψ_{a} is an alternating bilinear form on V.
(c) Show that $\psi=\psi_{s}+\psi_{a}$, i.e., that for any $v_{1}, v_{2} \in V$,

$$
\psi\left(v_{1}, v_{2}\right)=\psi_{s}\left(v_{1}, v_{2}\right)+\psi_{a}\left(v_{1}, v_{2}\right)
$$

2. Recall that S_{3} is the group of permutations on $\{1,2,3\}$. For each of the six elements $\sigma \in S_{3}$, compute $\operatorname{sgn}(\sigma)$ in two different ways:
(a) Express σ as a product of t transpositions, and compute $(-1)^{t}$;
(b) Compute $|\sigma|$, the number of orbits of the action of σ on $\{1,2,3\}$, and compute $(-1)^{3-|\sigma|}$.
3. Suppose ϕ is an alternating trilinear form on V. Suppose $v_{1}, v_{2}, v_{3} \in V$ and $a_{i j} \in \mathbb{F}$ for $1 \leq i, j \leq 3$.
Explicitly compute

$$
\phi\left(\sum_{i=1}^{3} a_{i 1} v_{i}, \sum_{i=1}^{3} a_{i 2} v_{i}, \sum_{i=1}^{3} a_{i 3} v_{i}\right) .
$$

4. Suppose $\operatorname{dim} V=n$, and $\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis. In class, we defined a nontrivial n-linear alternating form D in the following way: If $u_{1}, \cdots, u_{n} \in V$ with

$$
u_{j}=\sum_{i=1}^{n} a_{i j} v_{i},
$$

then

$$
D\left(u_{1}, \cdots, u_{n}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{j=1}^{n} a_{\sigma(j), j}
$$

[^0]Define vectors $u_{1}^{\prime}, \cdots, u_{n}^{\prime}$ by

$$
u_{i}^{\prime}=\sum_{j=1}^{n} a_{i j} v_{j} .
$$

(If you prefer, think of $u_{j}^{\prime}=\sum_{i=1}^{n} b_{i j} v_{i}$, where $b_{i j}=a_{j i}$.)
Show that

$$
D\left(u_{1}^{\prime}, \cdots, u_{n}^{\prime}\right)=D\left(u_{1}, \cdots, u_{n}\right) .
$$

This shows that if $A \in \operatorname{Mat}_{n}(\mathbb{F})$ is a matrix with transpose $A^{\text {tr }}$, then $\operatorname{det}(A)=\operatorname{det}\left(A^{\operatorname{tr}}\right)$.

[^0]: ${ }^{1}$ Also, suppose the characteristic of k is not two.

