Homework 6 Due: Wednesday, March 4

- 1. Consider $V = \mathbb{R}[x]_3$, with basis $\mathcal{B} = \{1, x, x^2, x^3\}$.
 - (a) Describe the dual basis \mathcal{B}^* .
 - (b) Consider $I \in V^*$ defined by $I(p(x)) = \int_{-2}^{3} p(x) dx$. Express *I* as a linear combination of elements of the dual basis from part (a).
- 2. Suppose $A \subset V$; its annihilator is

$$A^{\perp} = \{ v^* \in V^* : \forall v \in A, (v, v^*) = 0 \}.$$

Show that A^{\perp} is a subspace of V^* .

- 3. [KK]3.2.3. (HINT: Consider (Tv, v*).)
- 4. Suppose $T \in \mathcal{L}(W, V)$ is injective. Show that the adjoint map $T^* \in \mathcal{L}(V^*, W^*)$ is surjective.

M469 Linear Algebra II Spring 2009