Homework 6
Due: Wednesday, March 4

1. Consider $V=\mathbb{R}[x]_{3}$, with basis $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$.
(a) Describe the dual basis \mathcal{B}^{*}.
(b) Consider $I \in V^{*}$ defined by $I(p(x))=\int_{-2}^{3} p(x) d x$. Express I as a linear combination of elements of the dual basis from part (a).
2. Suppose $A \subset V$; its annihilator is

$$
A^{\perp}=\left\{v^{*} \in V^{*}: \forall v \in A,\left(v, v^{*}\right)=0\right\} .
$$

Show that A^{\perp} is a subspace of V^{*}.
3. [KK]3.2.3. (Hint: Consider (Tv, v^{*}).)
4. Suppose $T \in \mathcal{L}(W, V)$ is injective. Show that the adjoint map $T^{*} \in \mathcal{L}\left(V^{*}, W^{*}\right)$ is surjective.

