Homework 5 Due: Wednesday, February 25

Throughout, let W *and* V *be vector spaces over a field* \mathbb{F} *.*

1. Consider the following matrix $A \in Mat_{5,5}(\mathbb{Q})$:

$$A = \begin{pmatrix} 1 & 0 & 0 & 3 & 1 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 5 & -3 & 2 & 11 & -1 \\ 9 & 2 & 1 & 32 & 13 \end{pmatrix};$$

it represents a linear transformation from \mathbb{Q}^5 to \mathbb{Q}^5 (with its standard basis). What is the kernel of this transformation? What is it image? (See also exercise [KK]2.5.12, in which the same problem is phrased in terms of rows, instead of columns.)

- 2. Suppose $T \in \mathcal{L}(W, V)$ is actually an isomorphism. Suppose that $\{w_1, \dots, w_n\}$ is a basis for *W*. Prove that $\{T(w_1), \dots, T(w_n)\}$ is a basis for *V*, in two steps:
 - (a) Show that $\{T(w_1), \dots, T(w_n)\}$ spans *V*. (HINT: *T* is surjective.)
 - (b) Show that $\{T(w_1), \dots, T(w_n)\}$ is linearly independent. (HINT: *T* is injective.)
- 3. Let *W* and *V* be vector spaces over \mathbb{F} . Suppose that *W* and *V* are isomorphic, and that $\dim(W) = n$. Show that $\dim(V) = n$. (HINT: *Use problem 2.*)
- 4. Suppose $T \in \mathcal{L}(W, V)$. Recall that

$$\ker(T) = \{ w \in W : T(w) = 0 \}.$$

Prove that ker(T) is a subspace of *W*.

- 5. Suppose $T \in \mathcal{L}(W, V)$, with W and V finite-dimensional.
 - (a) Suppose dim $W > \dim V$. Prove that T is not injective.
 - (b) Suppose dim $W < \dim V$. Prove that *T* is not surjective.
 - (c) Is the converse of (a) true? If *T* is not injective, does it follow that dim $W < \dim V$? Explain. What about (b)?

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009