Homework 5
 Due: Wednesday, February 25

Throughout, let W and V be vector spaces over a field \mathbb{F}.

1. Consider the following matrix $A \in \operatorname{Mat}_{5,5}(\mathbb{Q})$:

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 3 & 1 \\
0 & 1 & 0 & 2 & 2 \\
0 & 0 & 1 & 1 & 0 \\
5 & -3 & 2 & 11 & -1 \\
9 & 2 & 1 & 32 & 13
\end{array}\right)
$$

it represents a linear transformation from \mathbb{Q}^{5} to \mathbb{Q}^{5} (with its standard basis). What is the kernel of this transformation? What is it image? (See also exercise [KK]2.5.12, in which the same problem is phrased in terms of rows, instead of columns.)
2. Suppose $T \in \mathcal{L}(W, V)$ is actually an isomorphism. Suppose that $\left\{w_{1}, \cdots, w_{n}\right\}$ is a basis for W. Prove that $\left\{T\left(w_{1}\right), \cdots, T\left(w_{n}\right)\right\}$ is a basis for V, in two steps:
(a) Show that $\left\{T\left(w_{1}\right), \cdots, T\left(w_{n}\right)\right\}$ spans V. (Hint: T is surjective.)
(b) Show that $\left\{T\left(w_{1}\right), \cdots, T\left(w_{n}\right)\right\}$ is linearly independent. (HINT: T is injective.)
3. Let W and V be vector spaces over \mathbb{F}. Suppose that W and V are isomorphic, and that $\operatorname{dim}(W)=n$. Show that $\operatorname{dim}(V)=n$. (Hint: Use problem 2.)
4. Suppose $T \in \mathcal{L}(W, V)$. Recall that

$$
\operatorname{ker}(T)=\{w \in W: T(w)=0\} .
$$

Prove that $\operatorname{ker}(T)$ is a subspace of W.
5. Suppose $T \in \mathcal{L}(W, V)$, with W and V finite-dimensional.
(a) Suppose $\operatorname{dim} W>\operatorname{dim} V$. Prove that T is not injective.
(b) Suppose $\operatorname{dim} W<\operatorname{dim} V$. Prove that T is not surjective.
(c) Is the converse of (a) true? If T is not injective, does it follow that $\operatorname{dim} W<\operatorname{dim} V$? Explain. What about (b)?

