Remember: If $\mathcal{B}=\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis for V, and if $v \in V$, then there are unique $a_{1}(v), \cdots, a_{n}(v) \in \mathbb{F}$ such that $v=\sum a_{i}(v) v_{i}$; and the associated column vector is

$$
[v]_{\mathcal{B}}=\left(\begin{array}{c}
a_{1}(v) \\
a_{2}(v) \\
\vdots \\
a_{n}(v)
\end{array}\right) .
$$

Similarly, if $T \in \mathcal{L}(W, V)$, if $\mathcal{C}=\left\{w_{1}, \cdots, w_{n}\right\}$ is a basis for W and if \mathcal{B} is a basis for V, then we set

$$
[T]_{\mathcal{B} \leftarrow \mathcal{C}}=\left(\left[T\left(w_{1}\right)\right]_{\mathcal{B}}\left[T\left(w_{2}\right)\right]_{\mathcal{B}} \cdots\left[T\left(w_{n}\right)\right]_{\mathcal{B}}\right) \in \operatorname{Mat}_{m, n}(\mathbb{F}) .
$$

These definitions are engineered so that matrix multiplication computes the effect of a linear transformation:

$$
[T(w)]_{\mathcal{B}}=[T]_{\mathcal{B} \leftarrow \mathcal{C}} \cdot[w]_{\mathcal{C}} .
$$

1. Consider the following vectors in \mathbb{R}^{2} :

$$
u_{1}=\binom{1}{2} \quad u_{2}=\binom{3}{4} \quad v_{1}=\binom{14}{22} \quad v_{2}=\binom{9}{14}
$$

Let $\mathcal{B}=\left(u_{1}, u_{2}\right)$ and $\mathcal{C}=\left(v_{1}, v_{2}\right)$; each one is a basis for \mathbb{R}^{2}.
(a) Express u_{1} and u_{2} in terms of the basis \mathcal{C}, and do the same for v_{1} and v_{2} in terms of \mathcal{B}. That is, compute:

$$
\left[u_{1}\right]_{\mathcal{C}},\left[u_{2}\right]_{\mathcal{C}},\left[v_{1}\right]_{\mathcal{B}},\left[v_{2}\right]_{\mathcal{B}} .
$$

(b) What is $[\mathrm{id}]_{\mathcal{C} \leftarrow \mathcal{B}}$?
2. Recall that $\mathbb{R}[z]_{3}$ is the vector space of polynomials of degree at most 3 .

Let $\mathcal{B}=\left\{1, z, z^{2}, z^{3}\right\}$; let $\mathcal{C}=\left\{1,2 z, 3 z^{2}, 4 z^{3}\right\}$. Each is a basis of \mathcal{P}_{3}.
Let $D: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the function $f(z) \mapsto f^{\prime}(z)$.
(a) Show that D is a linear transformation.
(b) What is $[D]_{\mathcal{B} \leftarrow \mathcal{B}}$?
(c) What is $[D]_{\mathcal{C} \leftarrow \mathcal{B}}$?
3. Suppose that W, V and U are vector spaces over \mathbb{F}, that $f \in \mathcal{L}(V, U)$, and that $g \in \mathcal{L}(W, V)$. Show that $f \circ g \in \mathcal{L}(W, U)$, i.e., that $f \circ g$ is a linear transformation from W to U.
4. Let W and V be vector spaces over \mathbb{F}; let \mathcal{C} be a basis for W, and let \mathcal{B} be a basis for V. Suppose that $S, T \in \mathcal{L}(W, V)$. Show that

$$
[S+T]_{\mathcal{B} \leftarrow \mathcal{C}}=[S]_{\mathcal{B} \leftarrow \mathcal{C}}+[T]_{\mathcal{B} \leftarrow \mathcal{C}}
$$

5. Let v_{1}, \cdots, v_{n} be a basis for V. We showed that if we write $v=\sum a_{i}(v) v_{i}$, then $a_{i}(v+w)=$ $a_{i}(v)+a_{i}(w)$ and $a_{i}(b v)=b \cdot a_{i}(v)$. In other words, the map

$$
\begin{aligned}
& V \xrightarrow[v_{i}^{*}]{\longrightarrow} \mathbb{F} \\
& v \longmapsto a_{i}(v)
\end{aligned}
$$

is a linear transformation, which we denote $v_{i}^{*} \in \mathcal{L}(V, \mathbb{F})$. The purpose of this problem is to show that $\left\{v_{1}^{*}, \cdots, v_{n}^{*}\right\}$ is a basis for $\mathcal{L}(V, \mathbb{F})$.
(a) Show that

$$
v_{i}^{*}\left(v_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

(b) What is $\left(\sum_{i} b_{i} v_{i}^{*}\right)\left(v_{j}\right)$?
(c) Show that the set $\left\{v_{1}^{*}, \cdots, v_{n}^{*}\right\} \subset \mathcal{L}(V, \mathbb{F})$ is linearly independent. (HiNT: Suppose that $\sum b_{i} v_{i}^{*}$ is the zero linear transformation. Evaluate at a vector v_{j}. What must b_{j} be?)
(d) Show that the set $\left\{v_{1}^{*}, \cdots, v_{n}^{*}\right\} \subset \mathcal{L}(V, \mathbb{F})$ spans. (Hint: Given $T \in \mathcal{L}(V, \mathbb{F})$, it suffices to find $b_{1}, \cdots, b_{n} \in \mathbb{F}$ such that for each $j, T\left(v_{j}\right)=\left(\sum b_{i} v_{i}^{*}\right)\left(v_{i}\right)$. Why?)

