Homework 4 Due: Wednesday, February 18

Remember: If $\mathcal{B} = \{v_1, \dots, v_n\}$ *is a basis for* V*, and if* $v \in V$ *, then there are unique* $a_1(v), \dots, a_n(v) \in \mathbb{F}$ *such that* $v = \sum a_i(v)v_i$ *; and the associated column vector is*

$$[v]_{\mathcal{B}} = \begin{pmatrix} a_1(v) \\ a_2(v) \\ \vdots \\ a_n(v) \end{pmatrix}$$

Similarly, if $T \in \mathcal{L}(W, V)$, if $\mathcal{C} = \{w_1, \dots, w_n\}$ is a basis for W and if \mathcal{B} is a basis for V, then we set

$$[T]_{\mathcal{B}\leftarrow\mathcal{C}} = ([T(w_1)]_{\mathcal{B}} [T(w_2)]_{\mathcal{B}} \cdots [T(w_n)]_{\mathcal{B}}) \in \operatorname{Mat}_{m,n}(\mathbb{F}).$$

These definitions are engineered so that matrix multiplication computes the effect of a linear transformation:

$$[T(w)]_{\mathcal{B}} = [T]_{\mathcal{B} \leftarrow \mathcal{C}} \cdot [w]_{\mathcal{C}}.$$

1. Consider the following vectors in \mathbb{R}^2 :

$$u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $u_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ $v_1 = \begin{pmatrix} 14 \\ 22 \end{pmatrix}$ $v_2 = \begin{pmatrix} 9 \\ 14 \end{pmatrix}$

Let $\mathcal{B} = (u_1, u_2)$ and $\mathcal{C} = (v_1, v_2)$; each one is a basis for \mathbb{R}^2 .

(a) Express u_1 and u_2 in terms of the basis C, and do the same for v_1 and v_2 in terms of B. That is, compute:

 $[u_1]_{\mathcal{C}}, [u_2]_{\mathcal{C}}, [v_1]_{\mathcal{B}}, [v_2]_{\mathcal{B}}.$

(b) What is $[id]_{\mathcal{C}\leftarrow\mathcal{B}}$?

2. Recall that $\mathbb{R}[z]_3$ is the vector space of polynomials of degree at most 3. Let $\mathcal{B} = \{1, z, z^2, z^3\}$; let $\mathcal{C} = \{1, 2z, 3z^2, 4z^3\}$. Each is a basis of \mathcal{P}_3 . Let $D : \mathcal{P}_3 \to \mathcal{P}_3$ be the function $f(z) \mapsto f'(z)$.

- (a) Show that *D* is a linear transformation.
- (b) What is $[D]_{\mathcal{B}\leftarrow\mathcal{B}}$?
- (c) What is $[D]_{\mathcal{C} \leftarrow \mathcal{B}}$?
- 3. Suppose that W, V and U are vector spaces over \mathbb{F} , that $f \in \mathcal{L}(V, U)$, and that $g \in \mathcal{L}(W, V)$. Show that $f \circ g \in \mathcal{L}(W, U)$, i.e., that $f \circ g$ is a linear transformation from W to U.

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009 4. Let *W* and *V* be vector spaces over \mathbb{F} ; let *C* be a basis for *W*, and let *B* be a basis for *V*. Suppose that *S*, *T* $\in \mathcal{L}(W, V)$. Show that

$$[S+T]_{\mathcal{B}\leftarrow\mathcal{C}}=[S]_{\mathcal{B}\leftarrow\mathcal{C}}+[T]_{\mathcal{B}\leftarrow\mathcal{C}}.$$

5. Let v_1, \dots, v_n be a basis for *V*. We showed that if we write $v = \sum a_i(v)v_i$, then $a_i(v+w) = a_i(v) + a_i(w)$ and $a_i(bv) = b \cdot a_i(v)$. In other words, the map

$$V \xrightarrow{v_i^*} \mathbb{F}$$
$$v \longmapsto a_i(v)$$

is a linear transformation, which we denote $v_i^* \in \mathcal{L}(V, \mathbb{F})$. The purpose of this problem is to show that $\{v_1^*, \dots, v_n^*\}$ is a basis for $\mathcal{L}(V, \mathbb{F})$.

(a) Show that

$$v_i^*(v_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

- (b) What is $(\sum_i b_i v_i^*)(v_j)$?
- (c) Show that the set $\{v_1^*, \dots, v_n^*\} \subset \mathcal{L}(V, \mathbb{F})$ is linearly independent. (HINT: Suppose that $\sum b_i v_i^*$ is the zero linear transformation. Evaluate at a vector v_j . What must b_j be?)
- (d) Show that the set $\{v_1^*, \dots, v_n^*\} \subset \mathcal{L}(V, \mathbb{F})$ spans. (HINT: *Given* $T \in \mathcal{L}(V, \mathbb{F})$, *it suffices to find* $b_1, \dots, b_n \in \mathbb{F}$ such that for each $j, T(v_j) = (\sum b_i v_i^*)(v_i)$. Why?)

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009