Homework 3 Due: Wednesday, February 11

1. Let $V = \mathbb{R}^3$, and let *W* be the subspace

$$W = \left\{ \begin{pmatrix} 0\\0\\t \end{pmatrix} : t \in \mathbb{R} \right\}.$$

- (a) Suppose $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and $y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ are two elements of *V*. How can you tell if $x \equiv y \mod W$? Explain.
- (b) Describe a function $T: V \to \mathbb{R}^2$ such that T(x) = T(y) if and only if $x \equiv y \mod W$.
- 2. Let *V* be a vector space over \mathbb{F} , and let $W \subset V$ be a subspace. As in class, if $v \in V$ let $\tilde{v} = v + W$; it's the set of all $z \in V$ such that $v \equiv z \mod W$.

Suppose $v_1, v_2 \in V$ satisfy $\tilde{v}_1 = \tilde{v}_2$, and suppose $a \in \mathbb{F}$. Show that $\tilde{av}_1 = \tilde{av}_2$. (HINT: *See* [*KK*], *Section* 1.2.4.)

- 3. [KK] 2.1.2.
- 4. (a) Consider the function

$$\mathbb{Q}^{3} \xrightarrow{S} \mathbb{Q}^{2}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \longmapsto \begin{pmatrix} x_{1} + x_{2} \\ x_{2} - x_{3} \end{pmatrix}$$

Show that *S* is a linear transformation.

(b) Conisder the function

$$\mathcal{C}^{\infty}(-\infty,\infty) \xrightarrow{T} \mathbb{R}[x]$$
$$f \longmapsto f(0) + f'(0)x + \frac{f''(0)}{2}x^2$$

Show that *T* is a linear transformation.

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009 5. The complex conjugation map from $\mathbb C$ to $\mathbb C$ is:

$$\mathbb{C} \xrightarrow{B} \mathbb{C}$$

$$z \longmapsto \overline{z}$$

$$a + bi \longmapsto a - bi$$

(a) Think of \mathbb{C} as a vector space over \mathbb{R} . Is *B* a linear transformation? Explain.

(b) Think of \mathbb{C} as a vector space over \mathbb{C} . Is *B* a linear transformation? Explain.

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009