Homework 3
Due: Wednesday, February 11

1. Let $V=\mathbb{R}^{3}$, and let W be the subspace

$$
W=\left\{\left(\begin{array}{l}
0 \\
0 \\
t
\end{array}\right): t \in \mathbb{R}\right\} .
$$

(a) Suppose $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and $y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ are two elements of V. How can you tell if $x \equiv y \bmod W$? Explain.
(b) Describe a function $T: V \rightarrow \mathbb{R}^{2}$ such that $T(x)=T(y)$ if and only if $x \equiv y \bmod W$.
2. Let V be a vector space over \mathbb{F}, and let $W \subset V$ be a subspace. As in class, if $v \in V$ let $\widetilde{v}=v+W$; it's the set of all $z \in V$ such that $v \equiv z \bmod W$.
Suppose $v_{1}, v_{2} \in V$ satisfy $\widetilde{v}_{1}=\widetilde{v}_{2}$, and suppose $a \in \mathbb{F}$. Show that $\widetilde{a_{1}}=\widetilde{v_{2}}$. (HINT: See [KK], Section 1.2.4.)
3. [KK] 2.1.2.
4. (a) Consider the function

$$
\begin{gathered}
\mathbb{Q}^{3} \xrightarrow{S} \mathbb{Q}^{2} \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{x_{1}+x_{2}}{x_{2}-x_{3}}
\end{gathered}
$$

Show that S is a linear transformation.
(b) Conisder the function

$$
\begin{aligned}
& \mathcal{C}^{\infty}(-\infty, \infty) \xrightarrow{T} \\
& \mathbb{R}[x] \\
& f \longmapsto f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}
\end{aligned}
$$

Show that T is a linear transformation.
5. The complex conjugation map from \mathbb{C} to \mathbb{C} is:

(a) Think of \mathbb{C} as a vector space over \mathbb{R}. Is B a linear transformation? Explain.
(b) Think of \mathbb{C} as a vector space over \mathbb{C}. Is B a linear transformation? Explain.

