Homework 2 Due: Wednesday, February 4

Throughout this problem set, let V be a vector space over a field \mathbb{F} .

- 1. Suppose $A \subseteq V$ and that $0 \in A$. Show that A is a linearly dependent set.
- 2. Let $v_1, \dots, v_m \in V$ be a linearly independent list of vectors. Suppose that $v \in V$. Prove (directly from the definition, without using results from class) that $\{v_1, \dots, v_m, v\}$ is linearly independent if and only if $v \notin \text{span}(v_1, \dots, v_m)$.
- 3. Let $\{v_1, \dots, v_m\}$ be a basis for *V*. Suppose $v \in V$.
 - (a) Show that there is *at least one* choice of numbers $a_1, \dots, a_m \in \mathbb{F}$ such that

$$v=\sum_{i=1}^m a_i v_i.$$

(HINT: *A basis spans.*)

- (b) Show that there is *exactly one* choice of numbers $a_1, \dots, a_m \in \mathbb{F}$ such that $v = \sum_{i=1}^m a_i v_i$. (HINT: *A basis is linearly independent*.)
- 4. [KK] 1.3.5.
- 5. Consider $\mathbb{R}[x]$ as a vector space over \mathbb{R} .
 - (a) Let

$$A = \{1, x, x^2, x^3, \dots\} = \{x^n : n \in \{0, 1, 2, 3 \dots\}\} \subset \mathbb{R}[x].$$

Show that *A* is a basis for $\mathbb{R}[x]$.

(b) Let $B = \{f_1, \dots, f_m\} \subset \mathbb{R}[x]$ be any *finite* subset. Show that *B* is not a basis for $\mathbb{R}[x]$. (HINT: *Degree*!)

Extra: Is \mathbb{R} finite-dimensional over \mathbb{Q} ? Is \mathbb{C} finite-dimensional over \mathbb{R} ? Is \mathbb{C} finite-dimensional over \mathbb{Q} ? ([KK] 1.2.1, 1.3.4)

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009