Homework 2

Due: Wednesday, February 4

Throughout this problem set, let V be a vector space over a field \mathbb{F}.

1. Suppose $A \subseteq V$ and that $0 \in A$. Show that A is a linearly dependent set.
2. Let $v_{1}, \cdots, v_{m} \in V$ be a linearly independent list of vectors. Suppose that $v \in V$. Prove (directly from the definition, without using results from class) that $\left\{v_{1}, \cdots, v_{m}, v\right\}$ is linearly independent if and only if $v \notin \operatorname{span}\left(v_{1}, \cdots, v_{m}\right)$.
3. Let $\left\{v_{1}, \cdots, v_{m}\right\}$ be a basis for V. Suppose $v \in V$.
(a) Show that there is at least one choice of numbers $a_{1}, \cdots, a_{m} \in \mathbb{F}$ such that

$$
v=\sum_{i=1}^{m} a_{i} v_{i} .
$$

(Hint: A basis spans.)
(b) Show that there is exactly one choice of numbers $a_{1}, \cdots, a_{m} \in \mathbb{F}$ such that $v=\sum_{i=1}^{m} a_{i} v_{i}$. (HINT: A basis is linearly independent.)
4. [KK] 1.3.5.
5. Consider $\mathbb{R}[x]$ as a vector space over \mathbb{R}.
(a) Let

$$
A=\left\{1, x, x^{2}, x^{3}, \cdots\right\}=\left\{x^{n}: n \in\{0,1,2,3 \cdots\}\right\} \subset \mathbb{R}[x] .
$$

Show that A is a basis for $\mathbb{R}[x]$.
(b) Let $B=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{R}[x]$ be any finite subset. Show that B is not a basis for $\mathbb{R}[x]$. (Hint: Degree!)

Extra: Is \mathbb{R} finite-dimensional over \mathbb{Q} ? Is \mathbb{C} finite-dimensional over \mathbb{R} ? Is \mathbb{C} finite-dimensional over \mathbb{Q} ? ([KK] 1.2.1, 1.3.4)

