Homework 10

Due: Wednesday, April 22

1. Suppose $S, T \in \mathcal{L}(V)$ and $S T$ is nilpotent. Show that $T S$ is nilpotent. (Hint: Suppose $(S T)^{2}=$ 0. Can you show that $(T S)^{3}=0$?)
2. (a) Given an example of a linear transformation $S \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ with minimal polynomial $\mu_{S}(x)=x^{2}$. What is $\chi_{S}(x)$?
(b) Extra: Let V / \mathbb{F} be an n-dimensional vector space, and suppose $T \in \mathcal{L}(V)$ has minimal polynomial $\mu_{T}(x)=(x-\lambda)^{e}$ for some $\lambda \in \mathbb{F}$ and $e \in \mathbb{N}$. Show that $\chi_{T}(x)=(x-\lambda)^{n}$.
3. (a) Give an example of a linear transformation $S \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ with minimal and characteristic polynomials

$$
\begin{aligned}
\mu_{S}(x) & =x(x-1)^{2}(x-2) \\
\chi_{S}(x) & =x(x-1)^{2}(x-2)
\end{aligned}
$$

(b) Give an example of a linear transformation $T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ with minimal and characteristic polynomials

$$
\begin{aligned}
& \mu_{T}(x)=x(x-1)(x-2) \\
& \chi_{T}(x)=x(x-1)^{2}(x-2)
\end{aligned}
$$

4. Consider the linear transformation $T \in \mathcal{L}\left(\mathbb{Q}^{5}\right)$ whose matrix, in the standard basis, is:

$$
[T]=\left(\begin{array}{cccccc}
5 & 4 & 0 & 0 & 4 & 3 \\
2 & 3 & 1 & 0 & 5 & 1 \\
0 & -1 & 2 & 0 & 2 & 0 \\
-8 & -8 & -1 & 2 & -12 & -7 \\
0 & 0 & 0 & 0 & -1 & 0 \\
-8 & -8 & -1 & 0 & -9 & -5
\end{array}\right)
$$

It turns out that

$$
\begin{aligned}
\chi_{T}(x) & =x^{6}-6 x^{5}+9 x^{4}+8 x^{3}-24 x^{2}+16 \\
& =(x+1)^{2}(x-2)^{4}
\end{aligned}
$$

The dimensions of the generalized eigenspaces are as follows:

j	$\operatorname{dim} \operatorname{ker}\left((T+1)^{j}\right)$	$\operatorname{dim} \operatorname{ker}\left((T-2)^{j}\right)$
1	2	2
2	2	3
3	2	4
4	2	4

Find the Jordan normal form of T.

