Homework 10 Due: Wednesday, April 22

- 1. Suppose $S, T \in \mathcal{L}(V)$ and ST is nilpotent. Show that TS is nilpotent. (HINT: Suppose $(ST)^2 = 0$. Can you show that $(TS)^3 = 0$?)
- 2. (a) Given an example of a linear transformation $S \in \mathcal{L}(\mathbb{R}^3)$ with minimal polynomial $\mu_S(x) = x^2$. What is $\chi_S(x)$?
 - (b) *Extra*: Let V/\mathbb{F} be an *n*-dimensional vector space, and suppose $T \in \mathcal{L}(V)$ has minimal polynomial $\mu_T(x) = (x \lambda)^e$ for some $\lambda \in \mathbb{F}$ and $e \in \mathbb{N}$. Show that $\chi_T(x) = (x \lambda)^n$.
- 3. (a) Give an example of a linear transformation $S \in \mathcal{L}(\mathbb{R}^4)$ with minimal and characteristic polynomials

$$\mu_S(x) = x(x-1)^2(x-2)$$

$$\chi_S(x) = x(x-1)^2(x-2).$$

(b) Give an example of a linear transformation $T \in \mathcal{L}(\mathbb{R}^4)$ with minimal and characteristic polynomials

$$\mu_T(x) = x(x-1)(x-2)$$

$$\chi_T(x) = x(x-1)^2(x-2).$$

4. Consider the linear transformation $T \in \mathcal{L}(\mathbb{Q}^5)$ whose matrix, in the standard basis, is:

$$[T] = \begin{pmatrix} 5 & 4 & 0 & 0 & 4 & 3\\ 2 & 3 & 1 & 0 & 5 & 1\\ 0 & -1 & 2 & 0 & 2 & 0\\ -8 & -8 & -1 & 2 & -12 & -7\\ 0 & 0 & 0 & 0 & -1 & 0\\ -8 & -8 & -1 & 0 & -9 & -5 \end{pmatrix}.$$

It turns out that

$$\chi_T(x) = x^6 - 6x^5 + 9x^4 + 8x^3 - 24x^2 + 16$$
$$= (x+1)^2(x-2)^4$$

The dimensions of the generalized eigenspaces are as follows:

j	$\dim \ker((T+1)^j)$	$\dim \ker((T-2)^j)$
1	2	2
2	2	3
3	2	4
4	2	4

Find the Jordan normal form of *T*.

Professor Jeff Achter Colorado State University M469 Linear Algebra II Spring 2009