Homework 8 Due: Friday, October 19

1. If *f* is a function, and $S = z_1, \dots, z_n$ is a finite set of complex numbers, then the average value of *f* on *S* is

$$\langle f(z) \rangle_S = \frac{1}{n} \sum_{j=1}^n f(z_j).$$

Fix a number $n \ge 2$ and a nonzero number α . Let *S* be the set of n^{th} roots of α .

- (a) What is $\langle z \rangle_S$? (HINT: See problem 2b on the midterm.)
- (b) Suppose $1 \le m < n$. What is $\langle z^m \rangle_S$?
- (c) Suppose m = 0. What is $\langle z^m \rangle_S$?
- (d) Let P(z) be a polynomial of degree deg P < n. Prove that

$$\langle P(z) \rangle_S = P(0).$$

2. [BC]37.1.

- 3. [BC]37.3, 40.7.
- 4. (a) [BC] 40.2.
 - (b) Repeat problem (a) using the function $g(z) = \overline{z} 1$.

Professor Jeff Achter Colorado State University M419: Introduction to Complex Variables Fall 2007