Homework 7
Due: Friday, October 5
Remember, there's a midterm on Monday, October 8. Start studying!

1. $[\mathrm{BC}] 30.2,30.5$.
2. $[B C] 30.10$.
3. For each of the expressions α^{β} in [BC] 32.2:

- Find all values of α^{β}.
- Find the principal value of α^{β}.

4. If $f(z)=u(x, y)+i v(x, y)$ is differentiable at z, then

$$
\begin{equation*}
f^{\prime}(z)=u_{x}+i v_{x} . \tag{1}
\end{equation*}
$$

(a) Using the relations

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta),
\end{aligned}
$$

show that

$$
\begin{aligned}
& u_{x}=u_{r} \cos (\theta)-u_{\theta} \frac{\sin (\theta)}{r} \\
& u_{y}=u_{r} \sin (\theta)+u_{\theta} \frac{\cos (\theta)}{r} .
\end{aligned}
$$

(b) Show that the following alternate form of (1) holds: If $z=r \exp (i \theta)$, then

$$
f^{\prime}(z)=\exp (-i \theta)\left(u_{r}+i v_{r}\right) .
$$

(HINT: See [BC]22.7-8 and p.66)
5. Use the result of the previous problem to show that if $L(z)$ is a branch of the logarithm, then $L^{\prime}(z)=\frac{1}{z}$.

