Homework 5

Due: Friday, September 21

1. [BC] 17.1.
2. [BC] 17.5.
3. (a) [BC] 19.2.a
(b) Fix a natural number n. Show, by induction on j, that the $j^{\text {th }}$ derivative of z^{n} is

$$
\frac{d^{j}}{d z j^{n}} z^{n}=\left\{\begin{array}{ll}
\frac{n!}{(n-j)!} z^{n-j} & 1 \leq j<n \\
n! & j=n \\
0 & j>n
\end{array} .\right.
$$

(You may use the fact that if $n \geq 1$, then $\frac{d}{d z} z^{n}=n z^{n-1}$.)
(c) Show that the $j^{\text {th }}$ derivative of P, evaluated at 0 , is

$$
P^{(j)}(0)=j!a_{j} .
$$

4. Consider the function $f(z)=\bar{z}$.
(a) Prove that f is continuous everywhere.
(b) Prove that f is not differentiable anywhere.
5. Let $P(z)=\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)$. Prove, by induction on the degree n, that

$$
\frac{P^{\prime}(z)}{P(z)}=\frac{1}{z-z_{1}}+\frac{1}{z-z_{2}}+\cdots+\frac{1}{z-z_{n}} .
$$

