1. [BC] 10.1, 10.2, 10.3. Give a brief explanation for each answer; one-word responses will not suffice.

2. Let S be a subset of \mathbb{C}. Prove that every point of S is an interior point of S if and only if S contains none of its boundary points. (This is asserted, but left unproved, in the text.)

4. Suppose that S and T are open subsets of \mathbb{C}. Show that $S \cup T$ is open, too.

5. Let S and T be domains. If $S \cap T$ necessarily a domain? Prove or give a counterexample.

7. Write each of the following functions in the form $w = u(x, y) + iv(x, y)$.

 (a) $f(z) = 3z^2 + 5z + i + 1$.
 (b) $g(z) = \exp(z) + \exp(-z)$.

Professor Jeff Achter
Colorado State University

M419: Introduction to Complex Variables
Fall 2007