Homework 12

Due: Friday, November 16

1. $[\mathrm{BC}] 52.6,52.8$.
2. Carefully prove the following assertion from class:

Consider a series $\sum_{n \geq 1} z_{n}$, with partial sums S_{N}, and let S be a complex number. Define the $N^{\text {th }}$ remainder as $\rho_{N}=S-S_{N}$.
Show that $\sum_{n \geq 1} z_{n}=S$ if and only if the sequence $\left\{\rho_{N}\right\}_{N \geq 1}$ has limit 0 .
3. $[\mathrm{BC}] 54.7$.
4. Without computing derivatives, find the Maclaurin series for $\cos ^{3}(z)$. (Hint: Use the fact that $\left.4 \cos ^{3}(z)=\cos (3 z)+3 \cos (z).\right)$
5. Suppose a function $f(z)$ is represented in a neighborhood of 0 by the power series

$$
f(z)=\sum_{n \geq 0} a_{n} z^{n} .
$$

(a) Write down the Maclaurin series for $f^{\prime}(z)$.
(b) Prove that if $f(z)=f^{\prime}(z)$ then $a_{n+1}=\frac{1}{n+1} a_{n}$.
(c) Let λ be a nonzero complex number. Suppose that $f^{\prime}(z)=\lambda f(z)$. Give a formula for a_{n} in terms of a_{0}.

