Homework 12 Due: Friday, November 16

1. [BC]52.6, 52.8.

2. Carefully prove the following assertion from class:

Consider a series $\sum_{n\geq 1} z_n$, with partial sums S_N , and let S be a complex number. Define the N^{th} remainder as $\rho_N = S - S_N$.

Show that $\sum_{n\geq 1} z_n = S$ if and only if the sequence $\{\rho_N\}_{N\geq 1}$ has limit 0.

- 3. [BC]54.7.
- 4. Without computing derivatives, find the Maclaurin series for $\cos^3(z)$. (HINT: Use the fact that $4\cos^3(z) = \cos(3z) + 3\cos(z)$.)
- 5. Suppose a function f(z) is represented in a neighborhood of 0 by the power series

$$f(z) = \sum_{n \ge 0} a_n z^n.$$

- (a) Write down the Maclaurin series for f'(z).
- (b) Prove that if f(z) = f'(z) then $a_{n+1} = \frac{1}{n+1}a_n$.
- (c) Let λ be a nonzero complex number. Suppose that $f'(z) = \lambda f(z)$. Give a formula for a_n in terms of a_0 .

Professor Jeff Achter Colorado State University M419: Introduction to Complex Variables Fall 2007