Homework 11

Due: Friday, November 9

1. Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a polynomial of degree $n \geq 2$. In class, we will show that there exists some number R_{0} such that if $|z|>R_{0}$, then

$$
|P(z)|>\left|z^{n}\right| \frac{\left|a_{n}\right|}{2} .
$$

For any $R>0$, let C_{R} be the simple, positive closed contour around the circle of radius R centered at the origin, and let

$$
I_{R}=\int_{C_{R}} \frac{1}{P(z)} d z
$$

Suppose that $P(z)$ has all its roots inside the circle $|z|=r$.
(a) Show that for any $R \geq r, I_{R}=I_{r}$.
(b) Show that

$$
\lim _{R \rightarrow \infty} I_{R}=0 .
$$

(c) Show that

$$
\int_{C_{r}} \frac{1}{P(z)} d z=0
$$

2. Continuation of \#1 Now, suppose $P(z)=a_{1} z+a_{0}$ is a polynomial of degree one, and that its root is inside the circle $|z|=r$.
(a) What is

$$
\int_{C_{r}} \frac{1}{P(z)} d z ?
$$

(b) Why does the argument of Problem 1 not apply in this situation?
3. Let C be the unit circle taken once in the positive direction.
(a) Explain why the Cauchy integral formula does not directly apply to

$$
\begin{equation*}
\int_{C} \frac{\operatorname{Re}(z)}{z-1 / 2} d z \tag{1}
\end{equation*}
$$

(Hint: You may assume the result of $[B C] 24.7$.
(b) Show that if $|z|=1$, then $\operatorname{Re}(z)=\left(z+z^{-1}\right) / 2$.
(c) Use this to evaluate (1).
4. $[\mathrm{BC}] 50.4$.
5. $[\mathrm{BC}] 50.2$.

