Homework 1

Due: Friday, August 24

In this and all subsequent assignments, [BC] refers to Complex Variables and Applications, J. Brown and R. Churchill, seventh edition, McGraw-Hill, 2004. More precisely, [BC] 25.3 means problem 3 from Section 25 of Brown and Churchill.

1. [BC]2.2, 2.4, 3.1.
2. Prove that if $z \neq 1$ and if n is a natural number, then

$$
1+z+z^{2}+\cdots+z^{n}=\frac{z^{n+1}-1}{z-1}
$$

3. Here is one way of deriving Cardano's solution to the depressed cubic

$$
\begin{equation*}
x^{3}=3 p x+2 q . \tag{1}
\end{equation*}
$$

(a) Show that if you can find s and t simultaneously satisfying

$$
\begin{equation*}
s t=p \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
s^{3}+t^{3}=2 q, \tag{3}
\end{equation*}
$$

then $x=s+t$ is a solution to (1).
(This reduces the study of Equation (1) to that of Equations (2) and (3).)
(b) Use Equation 2 to eliminate t from Equation 3. Work to obtain a polynomial of degree 6 in s. Note that it is also a degree 2 polynomial in s^{3}.
(c) Use the quadratic formula to obtain the two possible values of s^{3}. For a given value of s^{3}, what must t^{3} be?
(d) Deduce Cardano's solution:

$$
x=\sqrt[3]{q+\sqrt{q^{2}-p^{3}}}+\sqrt[3]{q-\sqrt{q^{2}-p^{3}}} .
$$

