Midterm

Friday, October 6
Each problem is worth twelve points, evenly divided among the subproblems. You must justify your answer to receive full credit. You may express complex numbers in rectangular or polar coordinates.

1. For each statement, indicate if it is TRUE or FALSE, and provide a short (1-2 line) justification.
(a) If $z_{1}, z_{2} \in \mathbb{C}$, then $\operatorname{Im}\left(z_{1}+z_{2}\right)=\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)$.
(b) If $z_{1}, z_{2} \in \mathbb{C}$, then $\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re}\left(z_{1}\right) \operatorname{Re}\left(z_{2}\right)$.
(c) If $z_{1}, z_{2} \in \mathbb{C}$, then $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$.
(d) $|z|=1$ if and only if $z^{-1}=\bar{z}$.
2. (a) Compute $(-4 \sqrt{2}+i 4 \sqrt{2})^{1 / 3}$. Graph these numbers.
(b) Suppose z_{1}, \ldots, z_{n} are n complex numbers evenly spaced on a circle of radius r, centered at the origin. Show that $z_{1}^{n}=z_{2}^{n}=\cdots=z_{n}^{n}$.
3. Is the function

$$
g(z)=|z|^{2}
$$

differentiable? Prove your answer.
4. Prove, without using trigonometry, that for any real number θ,

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta)
$$

5. Consider the function $f(z)=z^{2}$.
(a) Calculate $f^{\prime}(z)$, using the definition of the derivative as a limit.
(b) In this problem, express a number z as $z=x+i y$.
i. Fix a real number c. Let $S_{c}=\{z \in \mathbb{C}: \operatorname{Re}(f(z))=c\}$. Calculate S_{c} (in terms of x and y).
ii. Fix a real number d. Let $T_{d}=\{z \in \mathbb{C}: \operatorname{Im}(f(z))=d\}$. Calculate T_{d}.
iii. Pick a positive value of c and of d. Graph S_{c} and T_{d}.

Extra credit In the situation of 2(b), suppose $P(z)$ is a polynomial of degree $r<n$. What is $\sum_{j=1}^{n} P\left(z_{j}\right)$? Justify.

