Midterm Friday, October 6

Each problem is worth twelve points, evenly divided among the subproblems. You must justify your answer to receive full credit. You may express complex numbers in rectangular or polar coordinates.

- 1. For each statement, indicate if it is **TRUE** or **FALSE**, and provide a short (1-2 line) justification.
 - (a) If $z_1, z_2 \in \mathbb{C}$, then $\text{Im}(z_1 + z_2) = \text{Im}(z_1) + \text{Im}(z_2)$.
 - (b) If $z_1, z_2 \in \mathbb{C}$, then $\operatorname{Re}(z_1 z_2) = \operatorname{Re}(z_1) \operatorname{Re}(z_2)$.
 - (c) If $z_1, z_2 \in \mathbb{C}$, then $\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$.
 - (d) |z| = 1 if and only if $z^{-1} = \overline{z}$.
- 2. (a) Compute $(-4\sqrt{2} + i 4\sqrt{2})^{1/3}$. Graph these numbers.
 - (b) Suppose $z_1, ..., z_n$ are *n* complex numbers evenly spaced on a circle of radius *r*, centered at the origin. Show that $z_1^n = z_2^n = \cdots = z_n^n$.
- 3. Is the function

$$g(z) = |z|^2$$

differentiable? Prove your answer.

4. Prove, without using trigonometry, that for any real number θ ,

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta).$$

- 5. Consider the function $f(z) = z^2$.
 - (a) Calculate f'(z), using the definition of the derivative as a limit.
 - (b) In this problem, express a number *z* as z = x + iy.
 - i. Fix a real number *c*. Let $S_c = \{z \in \mathbb{C} : \operatorname{Re}(f(z)) = c\}$. Calculate S_c (in terms of *x* and *y*).
 - ii. Fix a real number *d*. Let $T_d = \{z \in \mathbb{C} : \text{Im}(f(z)) = d\}$. Calculate T_d .
 - iii. Pick a positive value of *c* and of *d*. Graph S_c and T_d .

Extra credit In the situation of 2(b), suppose P(z) is a polynomial of degree r < n. What is $\sum_{i=1}^{n} P(z_i)$? Justify.

Professor Jeff Achter Colorado State University M419: Introduction to Complex Variables Fall 2006