Each problem is worth twelve points, evenly divided among the subproblems. You must justify your answer to receive full credit.

1	2	3	4	5	6	7	total

- 1. For each question, give a **brief** (one or two line) justification.
 - (a) Describe all numbers *z* such that:
 - i. $\overline{z} = iz$. ii. $\exp(z) = i$.
 - (b) For each of the following functions, state whether that function is or is not analytic.
 - i. f(z) = z. ii. $g(z) = \overline{z}$. iii. h(z) = |z|.
- 2. Consider the following two contours

$$C_1: z_1(t) = \exp(it) \quad t \in [0, \pi/2] C_2: z_2(t) = \exp(-it) \quad t \in [0, 3\pi/2]$$

and evaluate the following contour integrals.

(a) $\int_{C_1} z dz$.

(b)
$$\int_{C_2} z dz$$
.

- (c) $\int_{C_1} \overline{z} dz$.
- (d) $\int_{C_2} \overline{z} dz$.
- 3. Consider the function

$$f(z) = \frac{1}{z^2 - z^4}.$$

- (a) Find a series expansion for f valid on 0 < |z| < 1.
- (b) Find a series expansion for *f* valid on $1 < |z| < \infty$.
- (c) Let $g(z) = \frac{\exp(z)-1-z}{z^2-z^4}$. There exists an analytic function $\tilde{g}(z)$ which is analytic on some neighborhood $N_R(0)$ such that, for each $z \in N_R(0) \{0\}$, $\tilde{g}(z) = g(z)$. What is $\tilde{g}(0)$? Explain.

Professor Jeff Achter Colorado State University M419: Introduction to Complex Variables Fall 2006

Name:

Final

Tuesday, December 12

4. Compute

$$\int_0^\infty \frac{1}{(x^2+1)(x^2+4)} dx.$$

- 5. Let *C* be a simple, closed, contour. Suppose that *f* and *g* are both analytic on and inside *C* and that f = g on *C*. (In other words, for every $z \in C$, f(z) = g(z).) Prove that f = g throughout the interior of *C*.
- 6. Suppose that $f(z) = \sum_{n \ge 0} a_n z^n$ converges on some neighborhood of 0.
 - (a) Find a series representation for $f(\overline{z})$, in terms of powers of \overline{z} .
 - (b) Find a series representation for $f(\overline{z})$.
 - (c) Let $g(z) = f(\overline{z})$. Is g(z) analytic? Explain.
- 7. (a) Suppose *f* has a zero of order *m* at a point z_0 . Show that

$$\operatorname{res}(\frac{f'(z)}{f(z)};z_0) = m$$

(b) Suppose *f* is analytic on and inside a simple, positive, closed contour *C*. Suppose there are points $z_1, \dots z_r$ inside *C* such that *f* has a zero of order m_j at z_j for $j = 1, \dots, r$, and has no other zeros inside *C*. What is

$$\int_C \frac{f'(z)}{f(z)} dz?$$

Justify.

Extra credit Suppose *f* is analytic on a domain *D*, and that for each $z \in D$, z + 1 and z + i are in *D*, and that f(z+1) = f(z+i) = f(z). Let *S* be the unit square, with vertices 0, 1, 1 + i, and *i*.

Suppose that *f* has *m* poles and *n* zeros in the interior of *S*, and that each pole or zero is simple. Show that m = n. (HINT: Let *C* be be the simple, positive closed contour around *S*. Show that $\int_C \frac{f'(z)}{f(z)} dz = 0$.)

Professor Jeff Achter Colorado State University M419: Introduction to Complex Variables Fall 2006