Each problem is worth twelve points, evenly divided among the subproblems. You must justify your answer to receive full credit. You may express complex numbers in rectangular

1	2	3	4	5	6	7	8	total

1. Let C be the unit circle $|z|=1$, parametrized by

$$
\begin{array}{r}
{[0,2 \pi] \xrightarrow{z} \mathbb{C}} \\
t \longmapsto e^{i t}
\end{array}
$$

Use the definition of a contour integral to evaluate the following:
(a) $\int_{C} z d z$.
(b) $\int_{C} \bar{z} d z$.
(c) $\int_{C}|z| d z$.
2. (a) For each of the following functions, state whether that function is or is not analytic, and give a brief (one or two line) reason.
i. $f(z)=z$.
ii. $g(z)=\bar{z}$.
iii. $h(z)=|z|$.
(b) Pick one function from part (a) and prove, using the definition of the derivative as a limit, that the function is or is not analytic.
3. Let $\alpha=1+i$.
(a) Compute $\log (\alpha)$ and $\log (\alpha)$.
(b) Find all values of $\alpha^{1 / 4}$.
(c) Find all values of α^{i}.
4. Consider the function

$$
f(z)=\frac{z}{1-z^{2}} .
$$

(a) Find a series expansion of $f(z)$ centered at $z=0$.
(b) Find a series expansion of $f(z)$ centered at $z=1$.

5. Compute

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x
$$

6. Let C be a simple, closed contour. Suppose that $f(z)$ and $g(z)$ are analytic on and inside C; that $g(z)$ is never zero on or inside C; and that $|f(z)| \leq|g(z)|$ on C. Prove that $|f(z)| \leq|g(z)|$ in the interior of C.
7. (a) Suppose that $f(z)$ and $g(z)$ each have an isolated singularity at $z=\alpha$, and that $\lambda \in \mathbb{C}$.
i. Show that $\operatorname{res}(f(z)+g(z) ; \alpha)=\operatorname{res}(f(z) ; \alpha)+\operatorname{res}(g(z) ; \alpha)$.
ii. Show that $\operatorname{res}(\lambda f(z) ; \alpha)=\lambda \operatorname{res}(f(z) ; \alpha)$.
(b) Suppose that $P(z)$ is a polynomial of degree m and that $Q(z)$ is a polynomial of degree n. Let $f(z)=P(z) / Q(z)$, and let C be any simple, closed contour which contains all zeros of P and Q. Prove that

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)}=m-n
$$

(HINT: You may use the fact: If $R(z)$ is the polynomial $\lambda\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{r}\right)$, then $\left.R^{\prime}(z) / R(z)=1 /\left(z-\alpha_{1}\right)+\cdots+1 /\left(z-\alpha_{r}\right).\right)$
8. Let $f(z)$ be a function which is analytic everywhere.
(a) Let C be a simple, positive, closed contour. Suppose that a and b are distinct points in the interior of C. What is

$$
\int_{C} \frac{f(z)}{(z-a)(z-b)} d z ?
$$

(b) Let C_{R} be the circle of radius R centered at the origin. Suppose that $R>$ $2 \max (|a|,|b|)$, and that $|f(z)|<M$ for all $z \in C_{R}$. Show that

$$
\left|\frac{f(z)}{(z-a)(z-b)}\right|<\frac{4 M}{R^{2}}
$$

(c) Further suppose $|f(z)|<M$ everywhere. Prove Liouville's theorem: For every $a, b \in \mathbb{C}, f(a)=f(b)$.

