Name:

Each problem is worth twelve points, evenly divided among the subproblems. You must justify your answer to receive full credit. You may express complex numbers in rectangular or polar coordinates.

| st      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | total |
|---------|---|---|---|---|---|---|---|---|-------|
| u<br>ır |   |   |   |   |   |   |   |   |       |

1. Let *C* be the unit circle |z| = 1, parametrized by



Use the definition of a contour integral to evaluate the following:

- (a)  $\int_C z dz$ .
- (b)  $\int_C \overline{z} dz$ .
- (c)  $\int_C |z| dz$ .
- 2. (a) For each of the following functions, state whether that function is or is not analytic, and give a brief (one or two line) reason.
  - i. f(z) = z. ii.  $g(z) = \overline{z}$ . iii. h(z) = |z|.
  - (b) Pick one function from part (a) and prove, using the definition of the derivative as a limit, that the function is or is not analytic.
- 3. Let  $\alpha = 1 + i$ .
  - (a) Compute  $Log(\alpha)$  and  $log(\alpha)$ .
  - (b) Find all values of  $\alpha^{1/4}$ .
  - (c) Find all values of  $\alpha^i$ .
- 4. Consider the function

$$f(z) = \frac{z}{1 - z^2}.$$

- (a) Find a series expansion of f(z) centered at z = 0.
- (b) Find a series expansion of f(z) centered at z = 1.

Professor Jeff Achter Colorado State University M419: Introduction to Complex Variables Fall 2005 5. Compute

$$\int_0^\infty \frac{x^2}{(x^2+1)(x^2+9)} dx.$$

- 6. Let *C* be a simple, closed contour. Suppose that f(z) and g(z) are analytic on and inside *C*; that g(z) is never zero on or inside *C*; and that  $|f(z)| \le |g(z)|$  on *C*. Prove that  $|f(z)| \le |g(z)|$  in the interior of *C*.
- 7. (a) Suppose that f(z) and g(z) each have an isolated singularity at  $z = \alpha$ , and that  $\lambda \in \mathbb{C}$ .
  - i. Show that  $\operatorname{res}(f(z) + g(z); \alpha) = \operatorname{res}(f(z); \alpha) + \operatorname{res}(g(z); \alpha)$ .
  - ii. Show that  $res(\lambda f(z); \alpha) = \lambda res(f(z); \alpha)$ .
  - (b) Suppose that P(z) is a polynomial of degree *m* and that Q(z) is a polynomial of degree *n*. Let f(z) = P(z)/Q(z), and let *C* be any simple, closed contour which contains all zeros of *P* and *Q*. Prove that

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} = m - n$$

(HINT: You may use the fact: If R(z) is the polynomial  $\lambda(z - \alpha_1) \cdots (z - \alpha_r)$ , then  $R'(z)/R(z) = 1/(z - \alpha_1) + \cdots + 1/(z - \alpha_r)$ .)

- 8. Let f(z) be a function which is analytic everywhere.
  - (a) Let *C* be a simple, positive, closed contour. Suppose that *a* and *b* are distinct points in the interior of *C*. What is

$$\int_C \frac{f(z)}{(z-a)(z-b)} dz?$$

(b) Let  $C_R$  be the circle of radius R centered at the origin. Suppose that  $R > 2 \max(|a|, |b|)$ , and that |f(z)| < M for all  $z \in C_R$ . Show that

$$\left|\frac{f(z)}{(z-a)(z-b)}\right| < \frac{4M}{R^2}.$$

(c) Further suppose |f(z)| < M everywhere. Prove Liouville's theorem: For every  $a, b \in \mathbb{C}, f(a) = f(b)$ .

Professor Jeff Achter Colorado State University M419: Introduction to Complex Variables Fall 2005