Homework 8
Due: Friday, October 20

1. (a) $[B C] 40.2$.
(b) Repeat problem (a) using the function $g(z)=\bar{z}-1$.
2. [BC] 37.3, 40.7.
3. $[B C] 40.10$.
4. Let C be the contour which traces the circle $|z|=2$ once in the counterclockwise direction. Find an upper bound for

$$
\left|\int_{C} \frac{e^{z}}{z^{2}+1} d z\right|
$$

(HINT: Do not try to explicitly evaluate this integral.)
5. (a) Let $P(z)$ be a polynomial, and let C be any closed contour. Prove that $\int_{C} P(z) d z=0$.
(b) Let f be a function defined on a domain D, and let $C \subset D$ be a closed contour. Suppose you know that for every $\epsilon>0$ there exists some polynomial $P_{\epsilon}(z)$ such that, for every point z on the contour $C,\left|f(z)-P_{\epsilon}(z)\right|<\epsilon$. Prove that $\int_{C} f(z) d z=0$.

