Homework 13

Due: Friday, December 1

1. [BC] 56.6.
2. Let $f(z)=\frac{1}{z-z^{3}}$.
(a) Find a Laurent series expansion for f which is valid on $0<|z|<1$.
(b) Find a Laurent series expansion for f which is valid on $1<|z|$.
3. [BC] 64.2.
4. $[B C] 64.4$.
5. Suppose that P is a polynomial

$$
P(z)=\lambda\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) .
$$

(By the fundamental theorem of algebra, any polynomial can be written like this.)
Let C be a simple, closed contour which does not pass through any of the z_{1}, \cdots, z_{n}.
What is

$$
\frac{1}{2 \pi i} \int_{C} \frac{P^{\prime}(z)}{P(z)} ?
$$

(HINT: The answer depends on the choice of contour, C and on the z_{1}, \cdots, z_{n}. You may want to look again at Homework 5, Problem 5.)

