Homework 12

Due: Friday, November 17

1. [BC] 54.7
2. Suppose a function $f(z)$ is represented in a neighborhood of 0 by the power series

$$
f(z)=\sum_{n \geq 0} a_{n} z^{n} .
$$

(a) Write down the Maclaurin series for $f^{\prime}(z)$.
(b) Prove that if $f(z)=f^{\prime}(z)$ then $a_{n+1}=\frac{1}{n+1} a_{n}$.
(c) Let λ be a nonzero complex number. Suppose that $f^{\prime}(z)=\lambda f(z)$. Give a formula for a_{n} in terms of a_{0}.
3. [BC] 60.1.
4. [BC] 60.4. (HINT: Find a series representation for $\exp (z)-1$, and then for $(\exp (z)-1) / z$.)

