Homework 11

Due: Friday, November 10

1. Suppose that $f(z)=u(x, y)+i v(x, y)$ is continuous on a closed, bounded region R, and that it is analytic and nonconstant in the interior of R. Prove that $u(x, y)$ achieves its maximum value on the boundary of R, and not in the interior of R. (HINT: Consider $\exp (f(z))$.)
2. Prove the following assertion from class:

THEOREM A sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ is Cauchy if and only if it has a limit.
(HINT: You can use anything we did in class, especially November 3.)
3. $[B C] 52.3,52.6$.
4. [BC] 54.2.
5. [BC] 24.7. This should have been assigned a month ago; we used it in the lemma leading up to the maximum modulis principle.

