Homework 9

Due: Wednesday, April 18

1. Prove that the system of functions $\{\cos (m x), \sin (n x)\}_{n \in \mathbb{Z}}$ is orthogonal with respect to the inner product $\langle f, g\rangle=\int_{0}^{2 \pi} f(x) \overline{g(x)} d x$. Explicitly, show that

$$
\begin{aligned}
\langle\cos (m x), \cos (n x)\rangle & = \begin{cases}0 & m \neq n \\
\pi & m=n\end{cases} \\
\langle\sin (m x), \sin (n x)\rangle & = \begin{cases}0 & m \neq n \\
\pi & m=n\end{cases} \\
\langle\sin (m x), \cos (n x)\rangle & =0
\end{aligned}
$$

2. Denote the $n^{\text {th }}$ Fourier coefficient of f by $c_{n}(f)$.
(a) Show that $c_{n}(f+g)=c_{n}(f)+c_{n}(g)$.
(b) Suppose $a \in \mathbb{R}$. Show that $c_{n}(a f)=a c_{n}(f)$.
(HINT: These are easy if you're willing to use the inner-product formalism.)
3. [F]8.1.3
4. [F]8.1.4
5. [F]8.2.4ab
