Homework 8

Due: Wednesday, April 11

1. [F] 7.3.10.

2. Recall that on $(-1,1)$, we have the series expansion

$$
\begin{equation*}
\frac{1}{1-x}=\sum_{n \geq 0} x^{n} \tag{1}
\end{equation*}
$$

Find a power series expansion for $f(x)=\frac{1}{(1-x)^{2}}$ on $(-1,1)$ in two different ways:
(a) Using term by term differentiation on (1).
(b) By explicitly squaring the series on the right-hand side of (1).
(HinT: As a warmup for (b), calculate $\left(\sum_{n=0}^{5} x^{n}\right)^{2}$. If $N \geq j$, what is the coefficient of x^{j} in $\left(\sum_{n=0}^{N} x^{n}\right)^{2}$?)
3. Let f be a differentiable function such that $f(x+y)=f(x) f(y)$ for all real x and y. Show that

$$
f^{\prime}(x)=f^{\prime}(0) f(x) .
$$

(HINT: Calculate $f^{\prime}(x)$ using the definition of the derivative.)
4. In this problem, you'll need a tiny bit of information about complex numbers:

- There is an absolute value function on \mathbb{C} which extends the usual one, and still satisfies the triangle inequality; $|z+w| \leq|z|+|w|$.
- $i^{2}=-1$, and thus

$$
\begin{aligned}
i^{4 n+2} & =-1 \\
i^{4 n+3} & =-i \\
i^{4 n} & =1 \\
i^{4 n+1} & =i
\end{aligned}
$$

for all integers n.
Throughout this problem, suppose $\theta \in \mathbb{R}$.
(a) Show that

$$
e(z):=\sum_{n \geq 0} \frac{z^{n}}{n!}
$$

defines a function on all of \mathbb{C}. (Hint: It suffices to show that for any $z \in \mathbb{C}$, the (real, positive) series $\sum|z|^{n} / n!$ converges.)
(b) Show that

$$
\sum_{n \geq 0 \text { even }} \frac{(i \theta)^{n}}{n!}=\cos (\theta)
$$

(HINT: Look up, or derive, the Taylor expansion of $\cos (\theta)$.)
(c) Show that

$$
\sum_{n \geq 0 \text { odd }} \frac{(i \theta)^{n}}{n!}=i \sin (\theta)
$$

(d) Show that

$$
e(i \theta)=\cos (\theta)+i \sin (\theta) .
$$

Go read David Mumford's account of a bank with imaginary interest (page 21).
5. Prove the trigonometric identities

$$
\begin{aligned}
\cos (a+b) & =\cos (a) \cos (b)-\sin (a) \sin (b) \\
\sin (a+b) & =\cos (a) \sin (b)+\sin (a) \cos (b)
\end{aligned}
$$

in two different ways:
(a) Using the characterization $\exp (i x)=\cos (x)+i \sin (x)$; and
(b) Using the uniqueness (from class, Thursday April 5) of solutions to the initial value problem

$$
\begin{aligned}
f^{\prime}(x) & =-g(x) \\
g^{\prime}(x) & =f(x) \\
f(0) & =a \\
g(0) & =b
\end{aligned}
$$

