Homework 7

Due: Wednesday, April 4

1. [F]7.1.1.
2. [F]7.1.5.
3. (a) $[\mathrm{F}] 7.1 .7$.
(b) What goes wrong if instead one is given an infinite collection of sets $\left\{S_{N}\right\}_{N \in \mathbb{N}}$?
4. Let $\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots\right\}$ be an enumeration of the elements in $Q \cap[0,1]$.

Define functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $f:[0,1] \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
f(x) & = \begin{cases}\frac{1}{n} & x=a_{n} \\
0 & x \notin \mathbb{Q}\end{cases} \\
f_{n}(x) & =\left\{\begin{array}{ll}
\frac{1}{k} & x=a_{k}, k \leq n \\
0 & \text { otherwise }
\end{array} .\right.
\end{aligned}
$$

(a) Show that each f_{n} is Riemann integrable.
(b) Show that $f_{n} \rightarrow f$ uniformly on $[0,1]$. (Hint: What is $\left\|f_{n}-f\right\|_{\infty}$?)
(c) Show that f is not Riemann integrable.

In fact, f is Lebesgue integrable, and $\int_{[0,1]} f(x) d x=0$.
5. Prove Theorem 7.13: Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on $[a, b]$ such that the series $\sum_{n} f_{n}$ converges pointwise on $[a, b]$.
(a) If $\sum_{n} f_{n}$ converges uniformly on $[a, b]$, then

$$
\int_{a}^{b}\left(\sum_{n} f_{n}(x)\right) d x=\sum_{n} \int_{a}^{b} f_{n}(x) d x
$$

(b) If each f_{n} is C^{1} on $[a, b]$, and if $\sum_{n} f_{n}^{\prime}$ converges uniformly on $[a, b]$, then

$$
\frac{d}{d x}\left(\sum_{n} f_{n}(x)\right)=\sum_{n} f_{n}^{\prime}(x)
$$

6. [F] 7.2.1.
